WITHDRAWN: Membrane Aerated Biofilm Reactors for mainstream partial nitritation / anammox: Experiences using real municipal wastewater

2020 ◽  
Vol 186 ◽  
pp. 116351
Author(s):  
Philipp Bunse ◽  
Laura Orschler ◽  
Shelesh Agrawal ◽  
Susanne Lackner
2020 ◽  
Vol 9 ◽  
pp. 100066 ◽  
Author(s):  
Philipp Bunse ◽  
Laura Orschler ◽  
Shelesh Agrawal ◽  
Susanne Lackner

Entecho ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 1-5
Author(s):  
Vojtěch Kouba ◽  
Jan Bartáček

Proces částečná nitritace-anammox odstraňuje amoniakální dusík z odpadních vod s polovičními náklady na aeraci, až o 80 % nižší produkcí přebytečného kalu a bez spotřeby organického substrátu. Jde o zavedený proces pro odstraňování dusíku z kalových vod z anaerobní fermentace, a podobně koncentrovaných a teplých odpadních vod. Na tyto vody se částečná nitritace-anammox aplikuje již déle než deset let, a to např. pod názvy ANAMMOX®, ANITA™ Mox, DEMON®, nebo TERRAMOX®. Optimalizované provozy těchto technologií dusík běžně odstraňují při zatížení 0,5–2,3 kg∙m–3∙d–1 (30–35 °C). Současnou výzvou pro výzkum je implementace částečné nitritace-anammox do hlavního proudu studené splaškové odpadní vody, přičemž konkrétními problémy jsou (i) potlačení nežádoucích nitratačních mikroorganismů (NOB) a (ii) adaptace mikroorganismů anammox na nízké teploty. Náš výzkum jsme začali s jednostupňovým procesem, a poté nitritaci a anammox rozdělili do dvou reaktorů. Prezentujeme strategii, která v laboratorním měřítku NOB účinně potlačila i při 12 °C a dále i v pilotním měřítku při 13–30 °C. Dále ukazujeme, že anammox je možné na nízké teploty adaptovat studenými šoky. Tyto výsledky umožní rozšířit úsporné odstraňování dusíku i do hlavního proudu splaškové odpadní vody na ČOV. English: Partial nitritation-anammox (PN/A) process removes nitrogen from wastewater with 50% reduction of aeration costs, 80% less excess sludge and no consumption of organic carbon. PN/A is an established process for the removal of nitrogen from reject water from anaerobic digestion and other similarly warm and concentrated streams. On such wastewater, PN/A has been applied in full scale for over 10 years under names such as ANAMMOX®, ANITA™ Mox, DEMON® or TERRAMOX®, whose optimized installations consistently achieve nitrogen removal loading rates of 0,5–2,3 kg∙m–3∙d–1. The current challenge for research is to implement PN/A into the main stream of cold municipal wastewater, the specific challenges being (i) suppression of undesirable nitrite oxidizing bacteria (NOB) and (ii) adaptation of anammox microorganisms to low temperatures. Our initial experiences with one-stage PN/A in the main stream led us to the separation of PN/A in two subsequent reactors. Subsequently, we developed a strategy for NOB suppression in partial nitritation even under 12 °C, which we then successfully tested in the pilot scale. Furthermore, we found that anammox can be adapted to low temperatures using cold shocks. In sum, these results will enable extending the savings for nitrogen removal into the main stream of wastewater at WWTP.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 361-368 ◽  
Author(s):  
L. Bonomo ◽  
G. Pastorelli ◽  
E. Quinto ◽  
G. Rinaldi

Two bench-scale reactors, fed with the secondary effluent of a municipal wastewater treatment plant (WWTP), were used in order to study tertiary nitrification in pure oxygen moving bed biofilm reactors (PO-MBBRs) with patented KMT® media as biofilm carriers. The process allowed to measure very high nitrification rates, both in ammonia limiting conditions (up to 7 gN m−2 d−1; oxygen-to-ammonia nitrogen ratio higher than 3–4 mgO2 (mgN)−1) and in oxygen limiting conditions (up to 8 gN m−2 d−1; oxygen-to-ammonia nitrogen ratio lower than 1–2 mgO2 (mgN)−1). Since the process proved flexible and reliable, it is suitable for full-scale application to municipal WWTPs. Typical application could regard, but is not limited to, tertiary nitrification of secondary effluent from existing high-purity oxygen activated sludge systems designed to achieve only organic carbon removal.


2017 ◽  
Vol 51 (19) ◽  
pp. 11029-11038 ◽  
Author(s):  
Vojtech Kouba ◽  
Dana Vejmelkova ◽  
Eva Proksova ◽  
Helene Wiesinger ◽  
Martin Concha ◽  
...  

2000 ◽  
Vol 41 (4-5) ◽  
pp. 383-391 ◽  
Author(s):  
H. Ødegaard ◽  
B. Gisvold ◽  
J. Strickland

The moving bed biofilm process is based on plastic carriers on which biomass attaches and grows. The original Kaldnes carrier was made of high-density polyethylene (density 0.95 gcm−1) that could be used in filling fractions (volume of carriers in empty reactor) up to 70% that gives a specific area of 350 m2m−3. Lately there has been an interest in the use of larger carrier elements, especially when using the process for upgrading of activated sludge plants. This paper analyses the influence of the carrier size and shape on performance, especially related to highly loaded plants working on municipal wastewater. The results demonstrate that moving bed biofilm reactors should be designed based on surface area loading rate (g COD/m2d) and that shape and size of the carrier do not seem to be significant as long as the effective surface area is the same. The results indicate that very high organic loads can be used in order to remove soluble COD but that the settleability of the sludge is negatively influenced at high loading rates.


Sign in / Sign up

Export Citation Format

Share Document