Air-Water Interfacial Areas Relevant for Transport of Per and Poly-Fluoroalkyl Substances

2021 ◽  
pp. 117785
Author(s):  
Mark L Brusseau ◽  
Bo Guo
Keyword(s):  
1983 ◽  
Vol 48 (3) ◽  
pp. 842-853
Author(s):  
Kurt Winkler ◽  
František Kaštánek ◽  
Jan Kratochvíl

Specific gas-liquid interfacial area in flow tubes 70 mm in diameter of the length 725 and 1 450 mm resp. containing various swirl bodies were measured for concurrent upward flow in the ranges of average gas (air) velocities 11 to 35 ms-1 and liquid flow rates 13 to 80 m3 m-2 h-1 using the method of CO2 absorption into NaOH solutions. Two different flow regimes were observed: slug flow swirled annular-mist flow. In the latter case the determination was carried out separately for the film and spray flow components, respectively. The obtained specific areas range between 500 to 20 000 m3 m-2. Correlation parameters are energy dissipation criteria, related to the geometrical reactor volume and to the static liquid volume in the reactor.


1984 ◽  
Vol 39 (1) ◽  
pp. 179-183 ◽  
Author(s):  
G. Quicker ◽  
A. Schumpe ◽  
W.-D. Deckwer

1977 ◽  
Vol 55 (1) ◽  
pp. 13-18 ◽  
Author(s):  
J. Landau ◽  
J. Boyle ◽  
H. G. Gomaa ◽  
A. M. Al Taweel

2021 ◽  
Author(s):  
Marius Milatz ◽  
Nicole Hüsener ◽  
Edward Andò ◽  
Gioacchino Viggiani ◽  
Jürgen Grabe

AbstractGauging the mechanical effect of partial saturation in granular materials is experimentally challenging due to the very low suctions resulting from large pores. To this end, a uniaxial (zero radial stress) compression test may be preferable to a triaxial one where confining pressure and membrane effects may erase the contribution of this small suction; however, volume changes are challenging to measure. This work resolves this limitation by using X-ray imaging during in situ uniaxial compression tests on Hamburg Sand and glass beads at three different initial water contents, allowing a suction-dependent dilation to be brought to the light. The acquired tomography volumes also allow the development of air–water and solid–water interfacial areas, water clusters and local strain fields to be measured at the grain scale. These measurements are used to characterise pertinent micro-scale quantities during shearing and to relate them to the measured macroscopic response. The new and well-controlled data acquired during this experimental campaign are hopefully a useful contribution to the modelling efforts—to this end they are shared with the community.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012100
Author(s):  
V A Bershtein ◽  
A M Fainleib ◽  
D A Kirilenko ◽  
P N Yakushev

Abstract The study of nanostructure, thermal and relaxation properties (by HAADF-STEM, EDXS, DMA and DSC), combined with the calculations of interparticle distances and interfacial areas, has been performed for a series of the hybrid Cyanate Ester Resin (CER)/Si02 polymer composites with 0.01 to 10 wt.% Si02 units introduced via a sol-gel process. The absence of clusterization, arising only subnanometric Si02 nodes and their quasi-regular distribution within the amorphous matrix, with the shortest distances between nodes, provided their exceptional positive impact on the matrix properties at ultra-low Si02 contents of 0.03-0.1 wt.%. The superiority of these subnanocomposites over the nanocomposites was determined by the role of constrained interfacial dynamics over the whole matrix.


2008 ◽  
Vol 7 (3) ◽  
pp. 966-971 ◽  
Author(s):  
Martin H. Schroth ◽  
Mart Oostrom ◽  
Richard Dobson ◽  
Josef Zeyer

Sign in / Sign up

Export Citation Format

Share Document