scholarly journals Quantitative 3D imaging of partially saturated granular materials under uniaxial compression

2021 ◽  
Author(s):  
Marius Milatz ◽  
Nicole Hüsener ◽  
Edward Andò ◽  
Gioacchino Viggiani ◽  
Jürgen Grabe

AbstractGauging the mechanical effect of partial saturation in granular materials is experimentally challenging due to the very low suctions resulting from large pores. To this end, a uniaxial (zero radial stress) compression test may be preferable to a triaxial one where confining pressure and membrane effects may erase the contribution of this small suction; however, volume changes are challenging to measure. This work resolves this limitation by using X-ray imaging during in situ uniaxial compression tests on Hamburg Sand and glass beads at three different initial water contents, allowing a suction-dependent dilation to be brought to the light. The acquired tomography volumes also allow the development of air–water and solid–water interfacial areas, water clusters and local strain fields to be measured at the grain scale. These measurements are used to characterise pertinent micro-scale quantities during shearing and to relate them to the measured macroscopic response. The new and well-controlled data acquired during this experimental campaign are hopefully a useful contribution to the modelling efforts—to this end they are shared with the community.

2013 ◽  
Vol 353-356 ◽  
pp. 602-607
Author(s):  
Hai Jian Su ◽  
Hong Wen Jing ◽  
Chen Wang ◽  
Bo Meng

In order to study the post-peak mechanics behavior of rock samples with a thick wall cylinder structure, damaged rock samples were precast with a new method. The uniaxial compression tests and tri-axial compression tests were conducted on the samples and the test results were compared with that of complete rock samples. The results show that strength attenuation value of the damaged samples increased with the confining pressure and the specific relationship was obtained by nonlinear fitting as (is the strength attenuation value and is the confining pressure); destructiveness of damaged samples was more serious than the complete ones; a new nearly horizontal failure phenomenon appeared under the tri-axial compression and it was more general with the increase of confining pressure. Structure effect of uniaxial strength attenuation was revealed based on the particle flow software system (PFC) and the corresponding theoretical model was found as (is the strength attenuation value under uniaxial compression of any damaged sample with a thick wall cylinder structure; is the strength attenuation value of standard damaged samples under uniaxial compression; is the structure ratio, and are the parameters of the material). Characteristic value of the strength attenuation value under uniaxial compression was obtained by calculation when the structure ratio was indefinitely large.


Author(s):  
Omar Al Hattamleh ◽  
Balasingam Muhunthan

Abstract This paper highlights the use of incorporating strain gradient into flow stress to study localization behavior in materials. Pioneered by Zbib and Aifantis in the late 1980s, the formulation enabled incorporation of length scales into continuum formulations naturally. The formulation has also evolved into being able to study the effects of microstructure and heterogeneity on localization in granular materials. A multi-slip Mohr-Coulomb type plasticity model with the flow stress in the constitutive equation modified with a higher order gradient term of the effective plastic strain is used for this purpose. The possibility of abrupt changes of mobilized friction caused by intense shearing rate often leads to particle breakage. Its effects on localization is accounted for by modifying the material properties such as mobilized friction using a scaling parameter averaged over a representative elementary area. The change of shearing rate in the integration points was monitored through quasi-statistically measure parameter called inertia number. The inertia number was set to be all the time to consider quasi static less than l.0E-3. The formulation was implemented into a finite element code and used to simulate plane strain compression tests on dry sand. The model highlights effects of confining pressure, anisotropic microstructure, the non-coaxial angle between the direction of principal stress and principal plastic strain rate directions on shear band characteristics.


2007 ◽  
Vol 340-341 ◽  
pp. 1273-1278 ◽  
Author(s):  
De An Sun ◽  
Wen Xiong Huang ◽  
Dai Chao Sheng ◽  
Haruyuki Yamamoto

A practical elastoplastic constitutive model for granular materials is presented. And the model is suitable for description of the material behaviour for a wide range of stresses, including those sufficient to cause particle crushing. With a limited number of model parameters, the model can predict the confining-pressure dependent stress-strain relation and shear strength of granular materials in three-dimensional stresses, especially of variation of shear strength and dilatancy characteristics due to particle crushing under high confining pressure. The model parameters, which have clear physical meanings, can be determined from the results of isotropic compression test and conventional triaxial compression tests. The model performance is demonstrated for triaxial compression tests of a sand for a wide range of the confining-pressure from 0.2MPa to 8.0MPa.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2108
Author(s):  
Guanlin Liu ◽  
Youliang Chen ◽  
Xi Du ◽  
Peng Xiao ◽  
Shaoming Liao ◽  
...  

The cracking of rock mass under compression is the main factor causing structural failure. Therefore, it is very crucial to establish a rock damage evolution model to investigate the crack development process and reveal the failure and instability mechanism of rock under load. In this study, four different strength types of rock samples from hard to weak were selected, and the Voronoi method was used to perform and analyze uniaxial compression tests and the fracture process. The change characteristics of the number, angle, and length of cracks in the process of rock failure and instability were obtained. Three laws of crack development, damage evolution, and energy evolution were analyzed. The main conclusions are as follows. (1) The rock’s initial damage is mainly caused by tensile cracks, and the rapid growth of shear cracks after exceeding the damage threshold indicates that the rock is about to be a failure. The development of micro-cracks is mainly concentrated on the diagonal of the rock sample and gradually expands to the middle along the two ends of the diagonal. (2) The identification point of failure precursor information in Acoustic Emission (AE) can effectively provide a safety warning for the development of rock fracture. (3) The uniaxial compression damage constitutive equation of the rock sample with the crack length as the parameter is established, which can better reflect the damage evolution characteristics of the rock sample. (4) Tensile crack requires low energy consumption and energy dispersion is not concentrated. The damage is not apparent. Shear cracks are concentrated and consume a large amount of energy, resulting in strong damage and making it easy to form macro-cracks.


2006 ◽  
Vol 324-325 ◽  
pp. 567-570
Author(s):  
Yuan Hui Li ◽  
Rui Fu Yuan ◽  
Xing Dong Zhao

A series of uniaxial-compression tests were conducted on some representative brittle rock specimens, such as granite, marble and dolerite. A multi-channel, high-speed AE signal acquiring and analyzing system was employed to acquire and record the characteristics of AE events and demonstrate the temporal and spatial distribution of these events during the rupture-brewing process. The test result showed that in the primary stage, many low amplitude AE events were developed rapidly and distributed randomly throughout the entire specimens. In the second stage, the number of AE increased much slower than that in the first stage, while the amplitude of most AE events became greater. Contrarily to the primary stage, AE events clustered in the middle area of the specimen and distributed vertically conformed to the orientation of compression. The most distinct characteristic of this stage was a vacant gap formed approximately in the central part of the specimen. In the last stage, the number of AE events increased sharply and their magnitude increased accordingly. The final failure location coincidently inhabited the aforementioned gap. The main conclusion is that most macrocracks are developed from the surrounding microcracks existed earlier and their positions occupy the earlier formed gaps, and the AE activity usually becomes quite acute before the main rupture occurs.


2013 ◽  
Vol 1513 ◽  
Author(s):  
Guillaume Noiseau ◽  
Michael F. Becker ◽  
John W. Keto ◽  
Desiderio Kovar

ABSTRACTPorous, nanostructured silver samples were produced using a direct-write method where a nanoparticle aerosol consisting of particles with a mean size of approximately 5 nm were accelerated to speeds of approximately 1000 m/sec and impacted onto a translating substrate [1]. The impacting particles have sufficient energy to stick to the substrate, allowing patterned thick films to be directly written from the aerosol without a mask. Unlike other low temperature processing routes for achieving patterned films, no organics are added that can interfere with postdeposition processing. Typical films are 5- 100 μm thick, up to several centimeters long, and have an as-deposited relative densities as high as 70% of bulk Ag. Compression tests were carried out in steps at room temperature and at 150°C under constant displacement rates. Local strain and densification were measured by optical profilometry between each compression step. The results can be used as a starting point to better understand the mechanisms that govern plasticity, creep, and sintering in nanostructured, porous silver at low processing temperatures.


2008 ◽  
Vol 98 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Karina Maria Vieira Cavalieri ◽  
Johan Arvidsson ◽  
Alvaro Pires da Silva ◽  
Thomas Keller

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xi Chen ◽  
Wei Wang ◽  
Yajun Cao ◽  
Qizhi Zhu ◽  
Weiya Xu ◽  
...  

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.


Sign in / Sign up

Export Citation Format

Share Document