Prediction of local resonance band gaps in 2D elastic metamaterials via Bloch mode identification

Wave Motion ◽  
2021 ◽  
pp. 102734
Author(s):  
A. Ragonese ◽  
M. Nouh
2021 ◽  
pp. 116721
Author(s):  
Yang Jin ◽  
Xin-Yu Jia ◽  
Qian-Qian Wu ◽  
Xiao He ◽  
Guo-Cai Yu ◽  
...  

2021 ◽  
Vol 69 (3) ◽  
pp. 199-208
Author(s):  
Karisma Mohapatra ◽  
Dibya Prakash Jena

We propose periodic shells with helical slit to overcome the lacuna in periodic C scatterers, where the first Bragg band is considerably reduced on increasing width of the slit. The key discovery of this research indicates that, by changing the upright slit of the C scatterers to helical slits, larger insertion loss (IL) is achieved around the first Bragg band without compromising the local resonance band. Comparing the performance of periodic shells without slit or cylindrical scatterers, it is found that IL becomes larger at first Bragg band. The pitch, thickness of the shell and width of helical slit can be altered to adjust the resonance of the proposed shells. On decreasing the pitch or increasing the slit width, the resonance band shifts toward high frequencies without much alteration in acoustic attenuation of bandwidth. Additionally, below threshold pitch, the said peak merges with first Bragg band and broadens with prominent IL. The calculated band structure authenticates the bandwidth of the first Bragg band, and the additional sharp peak in IL can be attributed to local resonance of the periodic scatterers.


2017 ◽  
Vol 12 ◽  
pp. 30-36 ◽  
Author(s):  
A.O. Krushynska ◽  
M. Miniaci ◽  
F. Bosia ◽  
N.M. Pugno

2021 ◽  
Vol 263 (2) ◽  
pp. 4303-4311
Author(s):  
Edson J.P. de Miranda ◽  
Edilson D. Nobrega ◽  
Leopoldo P.R. de Oliveira ◽  
José M.C. Dos Santos

The wave propagation attenuation in low frequencies by using piezoelectric elastic metamaterials has been developed in recent years. These piezoelectric structures exhibit abnormal properties, different from those found in nature, through the artificial design of the topology or exploring the shunt circuit parameters. In this study, the wave propagation in a 1-D elastic metamaterial rod with periodic arrays of shunted piezo-patches is investigated. This piezoelectric metamaterial rod is capable of filtering the propagation of longitudinal elastic waves over a specified range of frequency, called band gaps. The complex dispersion diagrams are obtained by the extended plane wave expansion (EPWE) and wave finite element (WFE) approaches. The comparison between these methods shows good agreement. The Bragg-type and locally resonant band gaps are opened up. The shunt circuits influence significantly the propagating and the evanescent modes. The results can be used for elastic wave attenuation using piezoelectric periodic structures.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Y. Y. Chen ◽  
G. L. Huang ◽  
C. T. Sun

Elastic metamaterials have been extensively investigated due to their significant effects on controlling propagation of elastic waves. One of the most interesting properties is the generation of band gaps, in which subwavelength elastic waves cannot propagate through. In the study, a new class of active elastic metamaterials with negative capacitance piezoelectric shunting is presented. We first investigated dispersion curves and band gap control of an active mass-in-mass lattice system. The unit cell of the mass-in-mass lattice system consists of the inner masses connected by active linear springs to represent negative capacitance piezoelectric shunting. It was demonstrated that the band gaps can be actively controlled and tuned by varying effective stiffness constant of the linear spring through appropriately selecting the value of negative capacitance. The promising application was then demonstrated in the active elastic metamaterial plate integrated with the negative capacitance shunted piezoelectric patches for band gap control of both the longitudinal and bending waves. It can be found that the location and the extent of the induced band gap of the elastic metamaterial can be effectively tuned by using shunted piezoelectric patch with different values of negative capacitance, especially for extremely low-frequency cases.


Sign in / Sign up

Export Citation Format

Share Document