A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells

2005 ◽  
Vol 309 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Aarti Sharma ◽  
Anja Lambrechts ◽  
Le thi Hao ◽  
Thanh T. Le ◽  
Caroline A. Sewry ◽  
...  
2005 ◽  
Vol 25 (13) ◽  
pp. 5543-5551 ◽  
Author(s):  
Lili Wan ◽  
Daniel J. Battle ◽  
Jeongsik Yong ◽  
Amelie K. Gubitz ◽  
Stephen J. Kolb ◽  
...  

ABSTRACT Reduction of the survival of motor neurons (SMN) protein levels causes the motor neuron degenerative disease spinal muscular atrophy, the severity of which correlates with the extent of reduction in SMN. SMN, together with Gemins 2 to 7, forms a complex that functions in the assembly of small nuclear ribonucleoprotein particles (snRNPs). Complete depletion of the SMN complex from cell extracts abolishes snRNP assembly, the formation of heptameric Sm cores on snRNAs. However, what effect, if any, reduction of SMN protein levels, as occurs in spinal muscular atrophy patients, has on the capacity of cells to produce snRNPs is not known. To address this, we developed a sensitive and quantitative assay for snRNP assembly, the formation of high-salt- and heparin-resistant stable Sm cores, that is strictly dependent on the SMN complex. We show that the extent of Sm core assembly is directly proportional to the amount of SMN protein in cell extracts. Consistent with this, pulse-labeling experiments demonstrate a significant reduction in the rate of snRNP biogenesis in low-SMN cells. Furthermore, extracts of cells from spinal muscular atrophy patients have a lower capacity for snRNP assembly that corresponds directly to the reduced amount of SMN. Thus, SMN determines the capacity for snRNP biogenesis, and our findings provide evidence for a measurable deficiency in a biochemical activity in cells from patients with spinal muscular atrophy.


2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Heidi Fuller ◽  
Glenn Morris

AbstractReduced levels of the survival of motor neurons protein (SMN), cause the inherited neuromuscular disorder, spinal muscular atrophy (SMA). The majority of therapeutic approaches to date have been focused on finding ways to increase expression of functional SMN protein, though stabilization of SMN protein may also be an important consideration. SMN interacts, directly or indirectly, stably or transiently, with a large number of other proteins, some of which contribute to SMN stability and may therefore be potential targets for SMA therapy. We recently characterized the nuclear SMN interactome using LC-MALDI-TOF/TOF analysis of anti-SMN pull-downs and identified myb-binding protein-1a (Mybbp1a) as a novel partner. In light of interest in cytoplasm-specific roles of the SMN complex, we have applied the same approach to characterise the cytoplasmic SMN interactome. We now show that SMN complexes from HeLa cytoplasmic extracts differ significantly from those found in nuclear extracts, with gemin5, importinbeta and annexin A2 easily detected only in the cytoplasmic extracts, whereas interaction of SMN with Mybbp1a appears to occur only in the nucleus. SMN is ubiquitinylated and we also found proteins of the ubiquitin-proteasome system associated with SMN in the cytoplasm.


2002 ◽  
Vol 22 (18) ◽  
pp. 6533-6541 ◽  
Author(s):  
Séverine Massenet ◽  
Livio Pellizzoni ◽  
Sergey Paushkin ◽  
Iain W. Mattaj ◽  
Gideon Dreyfuss

ABSTRACT The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN associates with several proteins (Gemin2 to Gemin6) to form a large complex which is found both in the cytoplasm and in the nucleus. The SMN complex functions in the assembly and metabolism of several RNPs, including spliceosomal snRNPs. The snRNP core assembly takes place in the cytoplasm from Sm proteins and newly exported snRNAs. Here, we identify three distinct cytoplasmic SMN complexes, each representing a defined intermediate in the snRNP biogenesis pathway. We show that the SMN complex associates with newly exported snRNAs containing the nonphosphorylated form of the snRNA export factor PHAX. The second SMN complex identified contains assembled Sm cores and m3G-capped snRNAs. Finally, the SMN complex is associated with a preimport complex containing m3G-capped snRNP cores bound to the snRNP nuclear import mediator snurportin1. Thus, the SMN complex is associated with snRNPs during the entire process of their biogenesis in the cytoplasm and may have multiple functions throughout this process.


2005 ◽  
Vol 16 (10) ◽  
pp. 4660-4671 ◽  
Author(s):  
Jason K. Ospina ◽  
Graydon B. Gonsalvez ◽  
Janna Bednenko ◽  
Edward Darzynkiewicz ◽  
Larry Gerace ◽  
...  

The initial steps of spliceosomal small nuclear ribonucleoprotein (snRNP) maturation take place in the cytoplasm. After formation of an Sm-core and a trimethylguanosine (TMG) cap, the RNPs are transported into the nucleus via the import adaptor snurportin1 (SPN) and the import receptor importin-β. To better understand this process, we identified SPN residues that are required to mediate interactions with TMG caps, importin-β, and the export receptor, exportin1 (Xpo1/Crm1). Mutation of a single arginine residue within the importin-β binding domain (IBB) disrupted the interaction with importin-β, but preserved the ability of SPN to bind Xpo1 or TMG caps. Nuclear transport assays showed that this IBB mutant is deficient for snRNP import but that import can be rescued by addition of purified survival of motor neurons (SMN) protein complexes. Conserved tryptophan residues outside of the IBB are required for TMG binding. However, SPN can be imported into the nucleus without cargo. Interestingly, SPN targets to Cajal bodies when U2 but not U1 snRNPs are imported as cargo. SPN also relocalizes to Cajal bodies upon treatment with leptomycin B. Finally, we uncovered an interaction between the N- and C-terminal domains of SPN, suggesting an autoregulatory function similar to that of importin-α.


2013 ◽  
Vol 41 (4) ◽  
pp. 871-875 ◽  
Author(s):  
Judith Sleeman

The splicing of pre-mRNA by the spliceosome is a characteristic feature of eukaryotic cells, dependent on a group of snRNPs (small nuclear ribonucleoproteins). These splicing snRNPs have a complex assembly pathway involving multiple steps that take place in different regions of the cell, which is reflected in their complex subcellular distribution. Vital to the assembly of splicing snRNPs is the protein SMN (survival of motor neurons). In multicellular organisms, SMN acts in the cytoplasm, together with its associated protein complex to assemble a heptameric ring of proteins called the Sm proteins as an early stage in splicing snRNP assembly. A deficiency of the SMN protein results in the inherited neurodegenerative condition SMA (spinal muscular atrophy), a leading cause of infant mortality specifically affecting spinal motor neurons. It has long been a puzzle how lowered levels of a protein required for a process as fundamental as splicing snRNP assembly can result in a condition with such a definite cell-type-specificity. The present review highlights recent research that points to wider roles in RNA metabolism for both SMN itself and the Sm proteins with which it is linked.


2001 ◽  
Vol 11 (14) ◽  
pp. 1079-1088 ◽  
Author(s):  
Livio Pellizzoni ◽  
Jennifer Baccon ◽  
Bernard Charroux ◽  
Gideon Dreyfuss

1999 ◽  
Vol 147 (6) ◽  
pp. 1181-1194 ◽  
Author(s):  
Bernard Charroux ◽  
Livio Pellizzoni ◽  
Robert A. Perkinson ◽  
Andrej Shevchenko ◽  
Matthias Mann ◽  
...  

The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.


Sign in / Sign up

Export Citation Format

Share Document