Genetic conversion of an SMN2 gene to SMN1: A novel approach to the treatment of spinal muscular atrophy

2008 ◽  
Vol 314 (4) ◽  
pp. 878-886 ◽  
Author(s):  
Darlise DiMatteo ◽  
Stephanie Callahan ◽  
Eric B. Kmiec
2020 ◽  
Vol 8 (5) ◽  
pp. 1093-1097
Author(s):  
Matthew W. Konigsberg ◽  
Hiroko Matsumoto ◽  
Jacob R. Ball ◽  
Benjamin D. Roye ◽  
Michael G. Vitale

2020 ◽  
Author(s):  
Yingjie Sun ◽  
Xiangdong Kong ◽  
Zhenhua Zhao ◽  
Xuechao Zhao

Abstract Background Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disease caused by mutations in the survival motor neuron 1 (SMN1) gene. At present, gene therapy medicine for SMA, i.e., Spinraza (Nusinersen), has been approved by the FDA, bringing hope to SMA patients and families. Accurate diagnosis is essential for treatment. Our goal was to detect genetic mutations in SMA patients in China and to show the results of the prenatal diagnosis of SMA.Methods In this study, we examined 419 patients in our hospital from January 2010 to September 2019. Multiplex ligation-dependent probe amplification analysis was used to determine the copy numbers of SMN1 and SMN2. Long-range PCR combined with nested PCR was used to detect point mutations in SMN1. In addition to the above detection methods, we also used QF-PCR in prenatal diagnosis to reduce the impact of maternal contamination. We conducted a total of 339 prenatal diagnoses from January 2010 to September 2019.Results Homozygous deletion of SMN1 exon 7 was detected in 96.40% (404/419) of patients. Homozygous deletion of SMN1 exon 7 alone was detected in 15 patients (3.60%). In total, 10 point mutations were detected in the 15 pedigrees. Most patients with SMA Type I have 1~2 copies of the SMN2 gene. Patients with SMA Type II have 2 or 3 copies of the SMN2 gene. The results of prenatal diagnoses showed that 118 fetuses were normal, 149 fetuses were carriers of heterozygous variants, and the remaining 72 fetuses harbored compound heterozygous variants or homozygous variants. Conclusions Our study found that the most common mutation in SMA was homozygous deletion of SMN1 exon 7 in our study. We suggest that detecting only the deletion of exon 7 of SMN1 can meet most of the screening needs. We also believe that SMN2 copy numbers can help infer the disease classification and provide some reference for future treatment options.


2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Galina Yu Zheleznyakova ◽  
Anton V Kiselev ◽  
Viktor G Vakharlovsky ◽  
Mathias Rask-Andersen ◽  
Rohit Chavan ◽  
...  

2015 ◽  
Vol 211 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Vittoria Pagliarini ◽  
Laura Pelosi ◽  
Maria Blaire Bustamante ◽  
Annalisa Nobili ◽  
Maria Grazia Berardinelli ◽  
...  

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by loss of motor neurons in patients with null mutations in the SMN1 gene. The almost identical SMN2 gene is unable to compensate for this deficiency because of the skipping of exon 7 during pre–messenger RNA (mRNA) processing. Although several splicing factors can modulate SMN2 splicing in vitro, the physiological regulators of this disease-causing event are unknown. We found that knockout of the splicing factor SAM68 partially rescued body weight and viability of SMAΔ7 mice. Ablation of SAM68 function promoted SMN2 splicing and expression in SMAΔ7 mice, correlating with amelioration of SMA-related defects in motor neurons and skeletal muscles. Mechanistically, SAM68 binds to SMN2 pre-mRNA, favoring recruitment of the splicing repressor hnRNP A1 and interfering with that of U2AF65 at the 3′ splice site of exon 7. These findings identify SAM68 as the first physiological regulator of SMN2 splicing in an SMA mouse model.


2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Heidi Fuller ◽  
Marija Barišić ◽  
Đurđica Šešo-Šimić ◽  
Tea Špeljko ◽  
Glenn Morris ◽  
...  

AbstractProgress in understanding the genetic basis and pathophysiology of spinal muscular atrophy (SMA), along with continuous efforts in finding a way to increase survival motor neuron (SMN) protein levels have resulted in several strategies that have been proposed as potential directions for efficient drug development. Here we provide an overview on the current status of the following approaches: 1) activation of SMN2 gene and increasing full length SMN2 transcript level, 2) modulating SMN2 splicing, 3) stabilizing SMN mRNA and SMN protein, 4) development of neurotrophic, neuroprotective and anabolic compounds and 5) stem cell and gene therapy. The new preclinical advances warrant a cautious optimism for emergence of an effective treatment in the very near future.


2010 ◽  
Vol 58 (2) ◽  
pp. 194-202 ◽  
Author(s):  
Susanna M. Grzeschik ◽  
Madhuri Ganta ◽  
Thomas W. Prior ◽  
William D. Heavlin ◽  
Ching H. Wang

Sign in / Sign up

Export Citation Format

Share Document