scholarly journals Enterocytic differentiation is modulated by lipid rafts-dependent assembly of adherens junctions

2011 ◽  
Vol 317 (10) ◽  
pp. 1422-1436 ◽  
Author(s):  
Nicolas T. Chartier ◽  
Michèle G. Lainé ◽  
Benjamin Ducarouge ◽  
Christiane Oddou ◽  
Bruno Bonaz ◽  
...  
2004 ◽  
Vol 299 (2) ◽  
pp. 498-510 ◽  
Author(s):  
S. Gout ◽  
C. Marie ◽  
M. Lainé ◽  
G. Tavernier ◽  
M.R. Block ◽  
...  

2015 ◽  
Vol 57 ◽  
pp. 189-201 ◽  
Author(s):  
Jay Shankar ◽  
Cecile Boscher ◽  
Ivan R. Nabi

Spatial organization of the plasma membrane is an essential feature of the cellular response to external stimuli. Receptor organization at the cell surface mediates transmission of extracellular stimuli to intracellular signalling molecules and effectors that impact various cellular processes including cell differentiation, metabolism, growth, migration and apoptosis. Membrane domains include morphologically distinct plasma membrane invaginations such as clathrin-coated pits and caveolae, but also less well-defined domains such as lipid rafts and the galectin lattice. In the present chapter, we will discuss interaction between caveolae, lipid rafts and the galectin lattice in the control of cancer cell signalling.


2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


2007 ◽  
Vol 177 (4S) ◽  
pp. 223-223
Author(s):  
Sreenivasa R. Chinni ◽  
Hamilto Yamamoto ◽  
Zhong Dong ◽  
Aaron Sabbota ◽  
Sanaa Nabha ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 46-46
Author(s):  
Carlos R. Estrada ◽  
Theodora Danciu ◽  
Maximilian Stehr ◽  
Joseph Khoury ◽  
Keith R. Solomon ◽  
...  

2003 ◽  
Vol 2 (1) ◽  
pp. 4
Author(s):  
A MAGUY ◽  
D GODREAU ◽  
P RATAJCZAK ◽  
C HEYMES ◽  
R VRANCKX ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document