Neuregulin1 signaling targets SRF and CREB and activates the muscle spindle-specific gene Egr3 through a composite SRF–CREB-binding site

2013 ◽  
Vol 319 (5) ◽  
pp. 718-730 ◽  
Author(s):  
Carter A. Herndon ◽  
Nick Ankenbruck ◽  
Bridget Lester ◽  
Julie Bailey ◽  
Larry Fromm
1993 ◽  
Vol 13 (11) ◽  
pp. 6866-6875 ◽  
Author(s):  
D C Hagen ◽  
L Bruhn ◽  
C A Westby ◽  
G F Sprague

Transcription activation of alpha-specific genes in Saccharomyces cerevisiae is regulated by two proteins, MCM1 and alpha 1, which bind to DNA sequences, called P'Q elements, found upstream of alpha-specific genes. Neither MCM1 nor alpha 1 alone binds efficiently to P'Q elements. Together, however, they bind cooperatively in a manner that requires both the P' sequence, which is a weak binding site for MCM1, and the Q sequence, which has been postulated to be the binding site for alpha 1. We analyzed a collection of point mutations in the P'Q element of the STE3 gene to determine the importance of individual base pairs for alpha-specific gene transcription. Within the 10-bp conserved Q sequence, mutations at only three positions strongly affected transcription activation in vivo. These same mutations did not affect the weak binding to P'Q displayed by MCM1 alone. In vitro DNA binding assays showed a direct correlation between the ability of the mutant sequences to form ternary P'Q-MCM1-alpha 1 complexes and the degree to which transcription was activated in vivo. Thus, the ability of alpha 1 and MCM1 to bind cooperatively to P'Q elements is critical for activation of alpha-specific genes. In all natural alpha-specific genes the Q sequence is adjacent to the degenerate side of P'. To test the significance of this geometry, we created several novel juxtapositions of P, P', and Q sequences. When the Q sequence was opposite the degenerate side, the composite QP' element was inactive as a promoter element in vivo and unable to form stable ternary QP'-MCM1-alpha 1 complexes in vitro. We also found that addition of a Q sequence to a strong MCM1 binding site allows the addition of alpha 1 to the complex. This finding, together with the observation that Q-element point mutations affected ternary complex formation but not the weak binding of MCM1 alone, supports the idea that the Q sequence serves as a binding site for alpha 1.


1993 ◽  
Vol 13 (1) ◽  
pp. 668-676
Author(s):  
V Lemarchandel ◽  
J Ghysdael ◽  
V Mignotte ◽  
C Rahuel ◽  
P H Roméo

The human glycoprotein IIB (GPIIB) gene is expressed only in megakaryocytes, and its promoter displays cell type specificity. We show that this specificity involved two cis-acting sequences. The first one, located at -55, contains a GATA binding site. Point mutations that abolish protein binding on this site decrease the activity of the GPIIB promoter but do not affect its tissue specificity. The second one, located at -40, contains an Ets consensus sequence, and we show that Ets-1 or Ets-2 protein can interact with this -40 GPIIB sequence. Point mutations that impair Ets binding decrease the activity of the GPIIB promoter to the same extent as do mutations that abolish GATA binding. A GPIIB 40-bp DNA fragment containing the GATA and Ets binding sites can confer activity to a heterologous promoter in megakaryocytic cells. This activity is independent of the GPIIB DNA fragment orientation, and mutations on each binding site result in decreased activity. Using cotransfection assays, we show that c-Ets-1 and human GATA1 can transactive the GPIIB promoter in HeLa cells and can act additively. Northern (RNA) blot analysis indicates that the ets-1 mRNA level is increased during megakaryocyte-induced differentiation of erythrocytic/megakaryocytic cell lines. Gel retardation assays show that the same GATA-Ets association is found in the human GPIIB enhancer and the rat platelet factor 4 promoter, the other two characterized regulatory regions of megakaryocyte-specific genes. These results indicate that GATA and Ets cis-acting sequences are an important determinant of megakaryocytic specific gene expression.


1988 ◽  
Vol 8 (1) ◽  
pp. 309-320 ◽  
Author(s):  
E E Jarvis ◽  
D C Hagen ◽  
G F Sprague

STE3 mRNA is present only in Saccharomyces cerevisiae alpha cells, not in a or a/alpha cells, and the transcript level increases about fivefold when cells are treated with a-factor mating pheromone. Deletions in the 5' noncoding region of STE3 defined a 43-base-pair (bp) upstream activation sequence (UAS) that can impart both modes of regulation to a CYC1-lacZ fusion when substituted for the native CYC1 UAS. UAS activity required the alpha 1 product of MAT alpha, which is known to be required for transcription of alpha-specific genes. A chromosomal deletion that removed only 14 bp of the STE3 UAS reduced STE3 transcript levels 50- to 100-fold, indicating that the UAS is essential for expression. The STE3 UAS shares a 26-bp homology with the 5' noncoding sequences of the only other known alpha-specific genes, MF alpha 1 and MF alpha 2. We view the homology as having two components--a nearly palindromic 16-bp "P box" and an adjacent 10-bp "Q box." A synthetic STE3 P box was inactive as a UAS; a perfect palindrome P box was active in all three cell types. We propose that the P box is the binding site for a transcription activator, but that alpha 1 acting via the Q box is required for this activator to bind to the imperfect P boxes of alpha-specific genes. Versions of the P box are also found upstream of a-specific genes, within the binding sites of the repressor alpha 2 encoded by MAT alpha. Thus, the products of MAT alpha may render gene expression alpha or a-specific by controlling access of the same transcription activator to its binding site, the P box.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Raghunath Chatterjee ◽  
Vikas Rishi ◽  
Julian Rozenberg ◽  
Paramita Bhattacharya ◽  
Kimberly Glass ◽  
...  

1991 ◽  
Vol 11 (7) ◽  
pp. 3735-3744 ◽  
Author(s):  
H Ernst ◽  
K Walsh ◽  
C A Harrison ◽  
N Rosenthal

The myosin light chain (MLC) 1/3 enhancer (MLC enhancer), identified at the 3' end of the skeletal MLC1/3 locus, contains a sequence motif that is homologous to a protein-binding site of the skeletal muscle alpha-actin promoter. Gel shift, competition, and footprint assays demonstrated that a CArG motif in the MLC enhancer binds the proteins MAPF1 and MAPF2, previously identified as factors interacting with the muscle regulatory element of the skeletal alpha-actin promoter. Transient transfection assays with constructs containing the chloramphenicol acetyltransferase reporter gene demonstrated that a 115-bp subfragment of the MLC enhancer is able to exert promoter activity when provided with a silent nonmuscle TATA box. A point mutation at the MAPF1/2-binding site interferes with factor binding and abolishes the promoter activity of the 115-bp fragment. The observation that an oligonucleotide encompassing the MAPF1/2 site of the MLC enhancer alone cannot serve as a promoter element suggests that additional factor-binding sites are necessary for this function. The finding that MAPF1 and MAPF2 recognize similar sequence motifs in two muscle genes, simultaneously activated during muscle differentiation, implies that these factors may have a role in coordinating the activation of contractile protein gene expression during myogenesis.


1994 ◽  
Vol 14 (11) ◽  
pp. 7517-7526 ◽  
Author(s):  
H S Ip ◽  
D B Wilson ◽  
M Heikinheimo ◽  
Z Tang ◽  
C N Ting ◽  
...  

The unique contractile phenotype of cardiac myocytes is determined by the expression of a set of cardiac muscle-specific genes. By analogy to other mammalian developmental systems, it is likely that the coordinate expression of cardiac genes is controlled by lineage-specific transcription factors that interact with promoter and enhancer elements in the transcriptional regulatory regions of these genes. Although previous reports have identified several cardiac muscle-specific transcriptional elements, relatively little is known about the lineage-specific transcription factors that regulate these elements. In this report, we demonstrate that the slow/cardiac muscle-specific troponin C (cTnC) enhancer contains a specific binding site for the lineage-restricted zinc finger transcription factor GATA-4. This GATA-4-binding site is required for enhancer activity in primary cardiac myocytes. Moreover, the cTnC enhancer can be transactivated by overexpression of GATA-4 in non-cardiac muscle cells such as NIH 3T3 cells. In situ hybridization studies demonstrate that GATA-4 and cTnC have overlapping patterns of expression in the hearts of postimplantation mouse embryos and that GATA-4 gene expression precedes cTnC expression. Indirect immunofluorescence reveals GATA-4 expression in cultured cardiac myocytes from neonatal rats. Taken together, these results are consistent with a model in which GATA-4 functions to direct tissue-specific gene expression during mammalian cardiac development.


2008 ◽  
Vol 22 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Shin-ichi Nishio ◽  
Tomoko Kakizawa ◽  
Gilles Chatelain ◽  
Gérard Triqueneaux ◽  
Frédéric Brunet ◽  
...  

Abstract The pineal gland plays a central role in the photoneuroendocrine system and acts as a photosensory organ in lower vertebrates. The orphan nuclear receptor Rev-erbα (NR1D1) has previously been shown to be expressed in the pineal and to be regulated with a robust circadian rhythm during zebrafish embryogenesis. This early pineal expression is under the control of the transcription factor Orthodenticle homeobox 5 (Otx5). In this paper, we show that Otx5 regulates the second zfRev-erbα promoter, ZfP2. Despite the absence of a classical Otx-binding site within ZfP2, this regulation depends on the integrity of the Otx5 homeodomain. Mapping experiments as well as EMSAs show that this interaction between Otx5 and ZfP2 depends on a noncanonical bipartite Otx-binding site (GANNCTTA and TAAA) that we called pineal expression related element (PERE). We showed that PERE is necessary for pineal expression in vivo by injecting zebrafish embryos with wild type and mutated versions of zfRev-erbα promoter fused to green fluorescent protein. Interestingly, PERE is found upstream of other genes expressed in the pineal gland, suggesting that it may play an important role in governing pineal expression. Our data establish that PERE is a novel cis-acting element contributing to pineal-specific gene expression and to Otx target gene regulation.


Gene ◽  
1995 ◽  
Vol 152 (2) ◽  
pp. 173-179 ◽  
Author(s):  
J. Proffitt ◽  
G. Crabtree ◽  
M. Grove ◽  
P. Daubersies ◽  
B. Bailleul ◽  
...  

1995 ◽  
Vol 15 (11) ◽  
pp. 5957-5965 ◽  
Author(s):  
K P Anderson ◽  
C B Kern ◽  
S C Crable ◽  
J B Lingrel

We have identified and characterized the gene for a novel zinc finger transcription factor which we have termed lung Krüppel-like factor (LKLF). LKLF was isolated through the use of the zinc finger domain of erythroid Krüppel-like factor (ELKF) as a hybridization probe and is closely related to this erythroid cell-specific gene. LKLF is expressed in a limited number of tissues, with the predominant expression seen in the lungs and spleen. The gene is developmentally controlled, with expression noted in the 7-day embryo followed by a down-regulation at 11 days and subsequent reactivation. A high degree of similarity is noted in the zinc finger regions of LKLF and EKLF. Beyond this domain, the sequences diverge significantly, although the putative transactivation domains for both LKLF and EKLF are proline-rich regions. In the DNA-binding domain, the three zinc finger motifs are so closely conserved that the predicted DNA contact sites are identical, suggesting that both proteins may bind to the same core sequence. This was further suggested by transactivation assays in which mouse fibroblasts were transiently transfected with a human beta-globin reporter gene in the absence and presence of an LKLF cDNA construct. Expression of the LKLF gene activates this human beta-globin promoter containing the CACCC sequence previously shown to be a binding site for EKLF. Mutation of this potential binding site results in a significant reduction in the reporter gene expression. LKLF and EKLF can thus be grouped as members of a unique family of transcription factors which have discrete patterns of expression in different tissues and which appear to recognize the same DNA-binding site.


Sign in / Sign up

Export Citation Format

Share Document