Four-carbon dicarboxylic acid production through the reductive branch of the open cyanobacterial tricarboxylic acid cycle in Synechocystis sp. PCC 6803

Author(s):  
Hiroko Iijima ◽  
Atsuko Watanabe ◽  
Haruna Sukigara ◽  
Kaori Iwazumi ◽  
Tomokazu Shirai ◽  
...  
Author(s):  
K. S. Ostrenko ◽  
V. P. Galochkina ◽  
V. О. Lemiasheuski ◽  
A. V. Agafonova ◽  
A. N. Ovcharova ◽  
...  

The paper is the fundamental beginning of research series aimed at understanding the processes associated with high performance in higher animals. The research aim is to study correlation of dicarboxylic acid cycle with tricarboxylic acid cycle with establishment of activity and dislocation of enzymes, confirming the hypothesis of availability and active metabolic participation of peroxisome in highly productive animals. Research was conducted on the basis of the VNIIFBiP animal vivarium in 2019 with a group of piglets of the Irish Landrace breed (n = 10). After slaughter at the age of 210 days, the nuclear (with large tissue particles), mitochondrial and postmitochondrial fractions of the liver were studied with assessment of succinate dehydrogenase and activity of other dehydrogenes of the Krebs cycle. It was found that peroxisomes act as universal agents of communication and cooperation, and microtelets are able to generate various chemical signals that carry information, to control and arrange a number of mechanisms in the metabolic processes in the body. Despite the fact that the Krebs cycle dehydrogenases are considered mitochondrial enzymes, the experiment showed an increase in activity of priruvate dehydrogenase (P > 0.1), isocitrate dehydrogenase (0.1 > P > 0.05) and malate dehydrogenase (0.1 > P > 0.05), which, when comparing the mitochondrial and postmitochondrial fractions, indicates a higher activity of peroxisomal fractions. The peroxisome localization place is the postmitochondrial fraction, and the lower layer contains larger peroxisomes to a greater extent, while the upper layer contains smaller ones. It was found that indicator enzymes of glyoxylate cycle isocitratliase and malate synthase exhibit catalytic activity in the peroxisomal fraction of liver of highly productive pigs. The obtained data on functioning of key glyoxylate cycle enzymes and their intracellular compartmentalization in highly productive pigs allow learning more about the specifics of metabolism and its regulation processes. Application of this knowledge in practice opens up prospects for rationalizing the production of livestock products of increased quantity, improved quality with less feed, labor and financial resources spent.


2021 ◽  
Author(s):  
E-Bin Gao ◽  
Penglin Ye ◽  
Haiyan Qiu ◽  
Junhua Wu ◽  
Huayou Chen

Abstract Background: The outstanding ability of directly assimilating carbon dioxide and sunlight to produce biofuels and chemicals impels photosynthetic cyanobacteria to become attractive organisms for the solution to the global warming crises and the world energy growth. The cyanobacteria-based method for ethanol production has been increasingly regarded as alternatives to food biomass-based fermentation and traditional petroleum-based production. Therefore, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 to synthesize ethanol and optimized the biosynthetic pathways for improving ethanol production under photoautotrophic conditions.Results: In this study, we successfully achieved the photosynthetic production of ethanol from atmospheric carbon dioxide by an engineered mutant Synechocystis sp. PCC 6803 with over-expressing the heterologous genes encoding Zymomonas mobilis pyruvate decarboxylase (PDC) and Escherichia coli NADPH-dependent alcohol dehydrogenase (YqhD). The engineered strain was further optimized by an alternative engineering approach to improve cell growth, and increase the intracellular supply of the precursor pyruvate for ethanol production under photoautotrophic conditions. This approach includes blocking phosphoenolpyruvate synthetic pathway from pyruvate, removing glycogen storage, and shunting carbon metabolic flux of tricarboxylic acid cycle. Through redirecting and optimizing the metabolic carbon flux of Synechocystis, a high ethanol-producing efficiency was achieved (248 mg L-1 day-1) under photoautotrophic conditions with atmospheric CO2 as the sole carbon source. Conclusions: The engineered strain SYN009 (∆slr0301/pdc-yqhD, ∆slr1176/maeB) would become a valuable biosystem for photosynthetic production of ethanol and for expanding our knowledge of exploiting cyanobacteria to produce value chemicals directly from atmospheric CO2.


Sign in / Sign up

Export Citation Format

Share Document