Photoautotrophic production of succinate via the oxidative branch of the tricarboxylic acid cycle influences glycogen accumulation in Synechocystis sp. PCC 6803

2019 ◽  
Vol 43 ◽  
pp. 101645
Author(s):  
Magdalena Mock ◽  
Andreas Schmid ◽  
Katja Bühler
2021 ◽  
Author(s):  
E-Bin Gao ◽  
Penglin Ye ◽  
Haiyan Qiu ◽  
Junhua Wu ◽  
Huayou Chen

Abstract Background: The outstanding ability of directly assimilating carbon dioxide and sunlight to produce biofuels and chemicals impels photosynthetic cyanobacteria to become attractive organisms for the solution to the global warming crises and the world energy growth. The cyanobacteria-based method for ethanol production has been increasingly regarded as alternatives to food biomass-based fermentation and traditional petroleum-based production. Therefore, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 to synthesize ethanol and optimized the biosynthetic pathways for improving ethanol production under photoautotrophic conditions.Results: In this study, we successfully achieved the photosynthetic production of ethanol from atmospheric carbon dioxide by an engineered mutant Synechocystis sp. PCC 6803 with over-expressing the heterologous genes encoding Zymomonas mobilis pyruvate decarboxylase (PDC) and Escherichia coli NADPH-dependent alcohol dehydrogenase (YqhD). The engineered strain was further optimized by an alternative engineering approach to improve cell growth, and increase the intracellular supply of the precursor pyruvate for ethanol production under photoautotrophic conditions. This approach includes blocking phosphoenolpyruvate synthetic pathway from pyruvate, removing glycogen storage, and shunting carbon metabolic flux of tricarboxylic acid cycle. Through redirecting and optimizing the metabolic carbon flux of Synechocystis, a high ethanol-producing efficiency was achieved (248 mg L-1 day-1) under photoautotrophic conditions with atmospheric CO2 as the sole carbon source. Conclusions: The engineered strain SYN009 (∆slr0301/pdc-yqhD, ∆slr1176/maeB) would become a valuable biosystem for photosynthetic production of ethanol and for expanding our knowledge of exploiting cyanobacteria to produce value chemicals directly from atmospheric CO2.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiyong Wei ◽  
Donghang Zhang ◽  
Jin Liu ◽  
Mengchan Ou ◽  
Peng Liang ◽  
...  

Abstract Background Metabolic status can be impacted by general anesthesia and surgery. However, the exact effects of general anesthesia and surgery on systemic metabolome remain unclear, which might contribute to postoperative outcomes. Methods Five hundred patients who underwent abdominal surgery were included. General anesthesia was mainly maintained with sevoflurane. The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain BIS (Bispectral index) value between 40 and 60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery was calculated for each patient. The patients were further divided into low ETsevo group (mean − SD) and high ETsevo group (mean + SD) to investigate the possible metabolic changes relevant to the amount of sevoflurane exposure. Results The mean ETsevo of the 500 patients was 1.60% ± 0.34%. Patients with low ETsevo (n = 55) and high ETsevo (n = 59) were selected for metabolomic analysis (1.06% ± 0.13% vs. 2.17% ± 0.16%, P < 0.001). Sevoflurane and abdominal surgery disturbed the tricarboxylic acid cycle as identified by increased citrate and cis-aconitate levels and impacted glycometabolism as identified by increased sucrose and D-glucose levels in these 114 patients. Glutamate metabolism was also impacted by sevoflurane and abdominal surgery in all the patients. In the patients with high ETsevo, levels of L-glutamine, pyroglutamic acid, sphinganine and L-selenocysteine after sevoflurane anesthesia and abdominal surgery were significantly higher than those of the patients with low ETsevo, suggesting that these metabolic changes might be relevant to the amount of sevoflurane exposure. Conclusions Sevoflurane anesthesia and abdominal surgery can impact principal metabolic pathways in clinical patients including tricarboxylic acid cycle, glycometabolism and glutamate metabolism. This study may provide a resource data for future studies about metabolism relevant to general anaesthesia and surgeries. Trial registration www.chictr.org.cn. identifier: ChiCTR1800014327.


Sign in / Sign up

Export Citation Format

Share Document