scholarly journals Using a split luciferase assay (SLA) to measure the kinetics of cell–cell fusion mediated by herpes simplex virus glycoproteins

Methods ◽  
2015 ◽  
Vol 90 ◽  
pp. 68-75 ◽  
Author(s):  
Wan Ting Saw ◽  
Zene Matsuda ◽  
Roselyn J. Eisenberg ◽  
Gary H. Cohen ◽  
Doina Atanasiu
2007 ◽  
Vol 81 (24) ◽  
pp. 13889-13903 ◽  
Author(s):  
Igor Beitia Ortiz de Zarate ◽  
Lilia Cantero-Aguilar ◽  
Magalie Longo ◽  
Clarisse Berlioz-Torrent ◽  
Flore Rozenberg

ABSTRACT The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion.


2003 ◽  
Vol 77 (6) ◽  
pp. 3759-3767 ◽  
Author(s):  
Guoying Zhou ◽  
Elisa Avitabile ◽  
Gabriella Campadelli-Fiume ◽  
Bernard Roizman

ABSTRACT Glycoprotein D (gD) interacts with two alternative protein receptors, nectin1 and HveA, to mediate herpes simplex virus (HSV) entry into cells. Fusion of the envelope with the plasma membrane requires, in addition to gD, glycoproteins gB, gH, and gL. Coexpression of the four glycoproteins (gD, gB, gH, and gL) promotes cell-cell fusion. gD delivered in trans is also capable of blocking the apoptosis induced by gD deletion viruses grown either in noncomplementing cells (gD−/−) or in complementing cells (gD−/+). While ectopic expression of cation-independent mannose-6 phosphate receptor blocks apoptosis induced by both stocks, other requirements differ. Thus, apoptosis induced by gD−/− virus is blocked by full-length gD (or two gD fragments reconstituting a full-length molecule), whereas ectopic expression of the gD ectodomain is sufficient to block apoptosis induced by gD−/+ virus. In this report we took advantage of a set of gD insertion-deletion mutants to map the domains of gD required to block apoptosis by gD−/− and gD−/+ viruses and those involved in cell-cell fusion. The mutations that resulted in failure to block apoptosis were the same for gD−/− and gD−/+ viruses and were located in three sites, one within the immunoglobulin-type core region (residues 125, 126, and 151), one in the upstream connector region (residues 34 and 43), and one in the C-terminal portion of the ectodomain (residue 277). A mutant that carried amino acid substitutions at the three glycosylation sites failed to block apoptosis but behaved like wild-type gD in all other assays. The mutations that inhibited polykaryocyte formation were located in the upstream connector region (residues 34 and 43), at the α1 helix (residue 77), in the immunoglobulin core and downstream regions (residue 151 and 187), and at the α3 helix (residues 243 and 246). Binding of soluble nectin1-Fc to cells expressing the mutant gDs was generally affected by the same mutations that affected fusion, with one notable exception (Δ277-310), which affected fusion without hampering nectin1 binding. This deletion likely identifies a region of gD involved in fusion activity at a post-nectin1-binding step. We conclude that whereas mutations that affected all functions (e.g., upstream connector region and residue 151) may be detrimental to overall gD structure, the mutations that affect specific activities identify domains of gD involved in the interactions with entry receptors and fusogenic glycoproteins and with cellular proteins required to block apoptosis. The evidence that glycosylation of gD is required for blocking apoptosis supports the conclusion that the interacting protein is the mannose-6 phosphate receptor.


2003 ◽  
Vol 77 (12) ◽  
pp. 6731-6742 ◽  
Author(s):  
Tina M. Cairns ◽  
Richard S. B. Milne ◽  
Manuel Ponce-de-Leon ◽  
Deanna K. Tobin ◽  
Gary H. Cohen ◽  
...  

ABSTRACT In alphaherpesviruses, glycoprotein B (gB), gD, gH, and gL are essential for virus entry. A replication-competent gL-null pseudorabies virus (PrV) (B. G. Klupp and T. C. Mettenleiter, J. Virol. 73:3014-3022, 1999) was shown to express a gDgH hybrid protein that could replace gD, gH, and gL in cell-cell fusion and null virus complementation assays. To study this phenomenon in herpes simplex virus type 1 (HSV-1), we constructed four gDgH chimeras, joining the first 308 gD amino acids to various gH N-terminal truncations. The chimeras were named for the first amino acid of gH at which each was truncated: 22, 259, 388, and 432. All chimeras were immunoprecipitated with both gD and gH antibodies to conformational epitopes. Normally, transport of gH to the cell surface requires gH-gL complex formation. Chimera 22 contains full-length gH fused to gD308. Unlike PrV gDgH, chimera 22 required gL for transport to the surface of transfected Vero cells. Interestingly, although chimera 259 failed to reach the cell surface, chimeras 388 and 432 exhibited gL-independent transport. To examine gD and gH domain function, each chimera was tested in cell-cell fusion and null virus complementation assays. Unlike PrV gDgH, none of the HSV-1 chimeras substituted for gL for fusion. Only chimera 22 was able to replace gH for fusion and could also replace either gH or gD in the complementation assay. Surprisingly, this chimera performed very poorly as a substitute for gD in the fusion assay despite its ability to complement gD-null virus and bind HSV entry receptors (HveA and nectin-1). Chimeras 388 and 432, which contain the same portion of gD as that in chimera 22, substituted for gD for fusion at 25 to 50% of wild-type levels. However, these chimeras functioned poorly in gD-null virus complementation assays. The results highlight the fact that these two functional assays are measuring two related but distinct processes.


1998 ◽  
Vol 72 (7) ◽  
pp. 5802-5810 ◽  
Author(s):  
Tracy Terry-Allison ◽  
Rebecca I. Montgomery ◽  
J. Charles Whitbeck ◽  
Ruliang Xu ◽  
Gary H. Cohen ◽  
...  

ABSTRACT The purpose of this study was to determine whether a cell surface protein that can serve as coreceptor for herpes simplex virus type 1 (HSV-1) entry, herpesvirus entry mediator (previously designated HVEM but renamed HveA), also mediates HSV-1-induced cell-cell fusion. We found that transfection of DNA from KOS-804, a previously described HSV-1 syncytial (Syn) strain whose Syn mutation was mapped to an amino acid substitution in gK, induced numerous large syncytia on HveA-expressing Chinese hamster ovary cells (CHO-HVEM12) but not on control cells (CHO-C8). Antibodies specific for gD as well as for HveA were effective inhibitors of KOS-804-induced fusion, consistent with previously described direct interactions between gD and HveA. Since mutations in gD determine the ability of HSV-1 to utilize HveA for entry, we examined whether the form of virally expressed gD also influenced the ability of HveA to mediate fusion. We produced a recombinant virus carrying the KOS-804 Syn mutation and the KOS-Rid1 gD mutation, which significantly reduces viral entry via HveA, and designated it KOS-SR1. KOS-SR1 DNA had a markedly reduced ability to induce syncytia on CHO-HVEM12 cells and a somewhat enhanced ability to induce syncytia on CHO-C8 cells. These results support previous findings concerning the relative abilities of KOS and KOS-Rid1 to infect CHO-HVEM12 and CHO-C8 cells. Thus, HveA mediates cell-cell fusion as well as viral entry and both activities of HveA are contingent upon the form of gD expressed by the virus.


2003 ◽  
Vol 77 (12) ◽  
pp. 6836-6844 ◽  
Author(s):  
Elisa Avitabile ◽  
Giulia Lombardi ◽  
Gabriella Campadelli-Fiume

ABSTRACT A Myc epitope was inserted at residue 283 of herpes simplex virus type 1 (HSV-1) glycoprotein K (gK), a position previously shown not to interfere with gK activity. The Myc-tagged gK localized predominantly to the endoplasmic reticulum, both in uninfected and in HSV-infected cells. gK, coexpressed with the four HSV fusogenic glycoproteins, gD, gB, gH, and gL, inhibited cell-cell fusion. The effect was partially dose dependent and was observed both in baby hamster kidney (BHK) and in Vero cells, indicating that the antifusion activity of gK may be cell line independent. The antifusion activity of gK did not require viral proteins other than the four fusogenic glycoproteins. A syncytial (syn) allele of gK (syn-gK) carrying the A40V substitution present in HSV-1(MP) did not block fusion to the extent seen with the wild-type (wt) gK, indicating that the syn mutation ablated, at least in part, the antifusogenic activity of wt gK. We conclude that gK is part of the mechanism whereby HSV negatively regulates its own fusion activity. Its effect accounts for the notion that cells infected with wt HSV do not fuse with adjacent, uninfected cells into multinucleated giant cells or syncytia. gK may also function to preclude fusion between virion envelope and the virion-encasing vesicles during virus transport to the extracellular compartment, thus preventing nucleocapsid de-envelopment in the cytoplasm.


2005 ◽  
Vol 79 (5) ◽  
pp. 2931-2940 ◽  
Author(s):  
Tatiana Gianni ◽  
Pier Luigi Martelli ◽  
Rita Casadio ◽  
Gabriella Campadelli-Fiume

ABSTRACT Human herpesviruses enter cells by fusion with target membranes, a process that requires three conserved glycoproteins: gB, gH, and gL. How these glycoproteins execute fusion is unknown. Neural network bioinformatics predicted a membrane α-helix contained within the ectodomain of herpes simplex virus (HSV) gH, positionally conserved in the gH of all examined herpesviruses. Evidence that it has attributes of an internal fusion peptide rests on the following lines of evidence. (i) The predicted membrane α-helix has the attribute of a membrane segment, since it transformed a soluble form of gD into a membrane-bound gD. (ii) It represents a critical domain of gH. Its partial or entire deletion, or substitution of critical residues inhibited HSV infectivity and fusion in the cell-cell fusion assay. (iii) Its replacement with the fusion peptide from human immunodeficiency virus gp41 or from vesicular stomatitis virus G partially rescued HSV infectivity and cell-cell fusion. The corresponding antisense sequences did not. (iv) The predicted α-helix located in the varicella-zoster virus gH ectodomain can functionally substitute the native HSV gH membrane α-helix, suggesting a conserved function in the human herpesviruses. We conclude that HSV gH exhibits features typical of viral fusion glycoproteins and that this property is likely conserved in the Herpesviridae family.


2004 ◽  
Vol 78 (15) ◽  
pp. 8015-8025 ◽  
Author(s):  
Elisa Avitabile ◽  
Giulia Lombardi ◽  
Tatiana Gianni ◽  
Miriam Capri ◽  
Gabriella Campadelli-Fiume

ABSTRACT Syncytium formation in cells that express herpes simplex virus glycoprotein B (gB), gD, gH, and gL is blocked by gK (E. Avitabile, G. Lombardi, and G. Campadelli-Fiume, J. Virol. 77:6836-6844, 2003). Here, we report the results of two series of experiments. First, UL20 protein (UL20p) expression weakly inhibited cell-cell fusion. Coexpression of UL20p and gK drastically reduced fusion in a cell-line-dependent manner, with the highest inhibition in BHK cells. Singly expressed UL20p and gK localized at the endoplasmic reticulum and nuclear membranes. When they were coexpressed, both proteins relocalized to the Golgi apparatus. Remarkably, in cells that coexpressed UL20p and gK, the antifusion activity correlated with a downmodulation of gD, gB, gH, and gL cell surface expression. Second, gBΔ867 has a partial deletion in the cytoplasmic tail that removed endocytosis motifs. Whereas wild-type (wt) gB was internalized in vesicles lined with the endosomal marker Rab5, gBΔ867 was not internalized, exhibited enhanced cell surface expression, and was more efficient in mediating cell-cell fusion than wt gB. The antifusion activity of UL20p and gK was also exerted when gBΔ867 replaced wt gB in the cell fusion assay. These studies show that the gB C tail carries a functional endocytosis motif(s) and that the removal of the motif correlated with increased gB surface expression and increased fusion activity. We conclude that cell-cell fusion in wt-virus-infected cells is negatively controlled by at least two mechanisms. The novel mechanism described here involves the concerted action of UL20p and gK and correlates with a moderate but consistent reduction in the cell surface expression of the fusion glycoproteins. This mechanism is independent of the one exerted through endocytosis-mediated downmodulation of gB from the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document