Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells

Methods ◽  
2021 ◽  
Author(s):  
Qi Wang ◽  
Sueanne Chear ◽  
Kristof Wing ◽  
David Stellon ◽  
Minh Thuan Nguyen Tran ◽  
...  
2015 ◽  
Vol 12 (9) ◽  
pp. 885-892 ◽  
Author(s):  
Daniel Paull ◽  
Ana Sevilla ◽  
Hongyan Zhou ◽  
Aana Kim Hahn ◽  
Hesed Kim ◽  
...  

2017 ◽  
Vol 89 (4) ◽  
pp. 2440-2448 ◽  
Author(s):  
Anna Baud ◽  
Frank Wessely ◽  
Francesca Mazzacuva ◽  
James McCormick ◽  
Stephane Camuzeaux ◽  
...  

Methods ◽  
2017 ◽  
Vol 121-122 ◽  
pp. 29-44 ◽  
Author(s):  
Saniye Yumlu ◽  
Jürgen Stumm ◽  
Sanum Bashir ◽  
Anne-Kathrin Dreyer ◽  
Pawel Lisowski ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2698
Author(s):  
Ishnoor Sidhu ◽  
Sonali P. Barwe ◽  
Raju K. Pillai ◽  
Anilkumar Gopalakrishnapillai

In vitro modeling of hematological malignancies not only provides insights into the influence of genetic aberrations on cellular and molecular mechanisms involved in disease progression but also aids development and evaluation of therapeutic agents. Owing to their self-renewal and differentiation capacity, induced pluripotent stem cells (iPSCs) have emerged as a potential source of short in supply disease-specific human cells of the hematopoietic lineage. Patient-derived iPSCs can recapitulate the disease severity and spectrum of prognosis dictated by the genetic variation among patients and can be used for drug screening and studying clonal evolution. However, this approach lacks the ability to model the early phases of the disease leading to cancer. The advent of genetic editing technology has promoted the generation of precise isogenic iPSC disease models to address questions regarding the underlying genetic mechanism of disease initiation and progression. In this review, we discuss the use of iPSC disease modeling in hematological diseases, where there is lack of patient sample availability and/or difficulty of engraftment to generate animal models. Furthermore, we describe the power of combining iPSC and precise gene editing to elucidate the underlying mechanism of initiation and progression of various hematological malignancies. Finally, we discuss the power of iPSC disease modeling in developing and testing novel therapies in a high throughput setting.


2019 ◽  
Author(s):  
AC Hepburn ◽  
EL Curry ◽  
M Moad ◽  
RE Steele ◽  
OE Franco ◽  
...  

AbstractPrimary culture of human prostate organoids is slow, inefficient and laborious. To overcome this, we demonstrate a new high-throughput model where rapidly proliferating and easily handled induced pluripotent stem cells, for the first time, enable generation of human prostate tissue in vivo and in vitro. Using a co-culture technique with urogenital sinus mesenchyme, we recapitulated the in situ prostate histology, including the stromal compartment and the full spectrum of epithelial differentiation. This approach overcomes major limitations in primary cultures of human prostate stem, luminal and neuroendocrine cells, as well as the stromal microenvironment. These models provide new opportunities to study prostate development, homeostasis and disease.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Claudia De Masi ◽  
Paola Spitalieri ◽  
Michela Murdocca ◽  
Giuseppe Novelli ◽  
Federica Sangiuolo

Sign in / Sign up

Export Citation Format

Share Document