Vibration band gaps for elastic metamaterial rods using wave finite element method

2016 ◽  
Vol 79 ◽  
pp. 192-202 ◽  
Author(s):  
E.D. Nobrega ◽  
F. Gautier ◽  
A. Pelat ◽  
J.M.C. Dos Santos
Author(s):  
Jie Hong ◽  
Xueqing He ◽  
Dayi Zhang ◽  
Yanhong Ma

Thin plates and shells are widely used to reduce the weight in modern mechanical systems, in particularly for the aeronautic and astronautical machineries. These thin structures can result in intensive modes, and lead to the difficulty on the suppression of vibration. The excessive vibration of casing can not only lead to the failure itself but also has a significant influence on the related external pipelines and other attachments which could cause the fatigue failure for the aero-engine casings. A proper method is needed to investigate the dynamic characteristics for these casings, and to be potentially further used for the vibration isolation design. Periodic structure has received a great deal of attentions for its band gap characteristics. Sound and other vibration can be forbidden to propagate in its band gap. With regard to the applications in aero-engines, the article provides one probable vibration isolation method for the stiffened plates and shells with high strength-to-weight ratio and with periodic configuration characteristics. The vibration characteristics of the stiffened shell are usually difficult to be acquired, and there is neither an analytical solution for the complicated stiffeners configuration. Therefore, a Wave finite element method (FEM) based on the wave theory and finite element method, which can solve the dynamic response and band gap characteristics of casings with wide frequency band is presented. Taking the characteristics of the curvature into account, it is proposed for how to confirm the periodic boundaries of the shells. Moreover, the finite element model built by ANSYS is combined with MATLAB program, and the validity of Wave FEM is proved in shell with different boundaries including free-clamped boundary and free-free boundary. The results reveal that with the increase of stiffeners’ width, wider frequency range and larger attenuating ability appear in the vibration band gap. While with the increase of stiffeners’ thickness, neither the variety of the attenuating capability nor of the frequency range of band gaps is monotone. And the local resonance of stiffeners is obvious, the corresponding band gaps’ contribution to the whole system is little. Moreover, three typical configurations-hexagonal, square and triangular are considered. The configurations of stiffeners have distinct characteristics on the dispersion relation, if the weight problems are not taken into account, the square honeycomb is better than the others.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ziyang Lian ◽  
Shan Jiang ◽  
Hongping Hu ◽  
Longxiang Dai ◽  
Xuedong Chen ◽  
...  

An enhanced plane wave expansion (PWE) method is proposed to solve piezoelectric phononic crystal (PPC) connected with resonant shunting circuits (PPC-C), which is named as PWE-PPC-C. The resonant shunting circuits can not only bring about the locally resonant (LR) band gap for the PPC-C but also conveniently tune frequency and bandwidth of band gaps through adjusting circuit parameters. However, thus far, more than one-dimensional PPC-C has been studied just by Finite Element method. Compared with other methods, the PWE has great advantages in solving more than one-dimensional PC as well as various lattice types. Nevertheless, the conventional PWE cannot accurately solve coupling between the structure and resonant shunting circuits of the PPC-C since only taking one-way coupling from displacements to electrical parameters into consideration. A two-dimensional PPC-C model of orthorhombic lattice is established to demonstrate the whole solving process of PWE-PPC-C. The PWE-PPC-C method is validated by Transfer Matrix method as well as Finite Element method. The dependence of band gaps on circuit parameters has been investigated in detail by PWE-PPC-C. Its advantage in solving various lattice types is further illustrated by calculating the PPC-C of triangular and hexagonal lattices, respectively.


2021 ◽  
Vol 263 (2) ◽  
pp. 3987-3998
Author(s):  
Giovanna Pisicchio Zanoni ◽  
Alberto Luiz Serpa

Local resonant metamaterials have been widely studied for vibration suppression in the last 20 years. They produce band gaps, which are frequency regions where the wave is not allowed to propagate. They are an alternative to reduce vibration levels at lower frequencies when compared to phononic crystals, which require larger periodic cells to create band gaps at lower frequencies. The most common configuration for a local resonant metamaterial is a periodic cell of a known structure with one attached resonator. In this study, a plate with a periodic cell using two different resonators is analyzed. Some configurations of mass and stiffness for the two resonators will be discussed to pursue the best compromise between a wider band gap and a more considerable vibration attenuation. The dispersion relation for the proposed metamaterial unit cell will be calculated using the Wave Finite Element Method to evaluate these configurations. The frequency response function for a finite structure with the proposed arrangement will also be calculated using the Finite Element Method to compare the results.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document