Green light optimal speed advisory for hybrid electric vehicles

2017 ◽  
Vol 87 ◽  
pp. 30-44 ◽  
Author(s):  
Yugong Luo ◽  
Shan Li ◽  
Shuwei Zhang ◽  
Zhaobo Qin ◽  
Keqiang Li
2011 ◽  
Vol 11 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Anil Kumar Yadav ◽  
Prerna Gaur ◽  
Shyama Kant Jha ◽  
J.R.P. Gupta ◽  
A.P. Mittal

Author(s):  
Zhiyuan Du ◽  
Lihong Qiu ◽  
Pierluigi Pisu

In this paper, we present a fuel efficient control strategy for a group of connected hybrid electric vehicles (HEVs) in urban road conditions. A hierarchical control architecture is proposed where the higher level controller is located at traffic signal light while the lower level controllers are equipped on each HEV. The higher level controller utilizes Signal Phase and Timing (SPAT) information from the traffic lights to generate target velocities for every HEV, which allows a maximum number of vehicles pass the intersection at given green light window. Model Predictive Control (MPC) is used to track the target velocity and evaluate the energy efficient velocity profile for every vehicle for a given horizon. Each lower level controller then follows the velocity profile (from the higher level controller) in a fuel efficient fashion using adaptive equivalent consumption minimization strategy (A-ECMS). The lower level controller also feeds the average recuperation efficiency in a certain time window back to the higher level controller, thus affects the future velocity profile evaluation from the higher level controller, which is the major contribution of this paper. In this paper, the HEV model is developed based on Autonomie software and the simulation results show the effectiveness of our proposed approach.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Sign in / Sign up

Export Citation Format

Share Document