Matrix regularization-based method for large-scale inverse problem of force identification

2020 ◽  
Vol 140 ◽  
pp. 106698
Author(s):  
Chudong Pan ◽  
Xijun Ye ◽  
Junyong Zhou ◽  
Zhuo Sun
Author(s):  
F. T. K. Au ◽  
R. J. Jiang ◽  
Y. K. Cheung

Abstract This paper reports some initial findings in the attempt to develop a robust method to identify more than one moving force on multi-span non-uniform continuous bridges. To keep the number of unknowns in the moving force identification problem to a minimum, the modified beam vibration functions are chosen as the assumed modes of a multi-span bridge. These modified beam vibration functions satisfy the zero deflection conditions at all the intermediate supports as well as the boundary conditions at the two ends of the bridge. The least squares method is used to solve the inverse problem to get the closest approximation to the moving forces. The pseudo-inverse to obtain the solution to the inverse problem is obtained by singular value decomposition. Only acceleration measurements are used for the moving force identification. The results show that this method is applicable and robust.


2019 ◽  
Vol 220 (2) ◽  
pp. 967-980
Author(s):  
Jack B Muir ◽  
Victor C Tsai

SUMMARY Tomography is one of the cornerstones of geophysics, enabling detailed spatial descriptions of otherwise invisible processes. However, due to the fundamental ill-posedness of tomography problems, the choice of parametrizations and regularizations for inversion significantly affect the result. Parametrizations for geophysical tomography typically reflect the mathematical structure of the inverse problem. We propose, instead, to parametrize the tomographic inverse problem using a geologically motivated approach. We build a model from explicit geological units that reflect the a priori knowledge of the problem. To solve the resulting large-scale nonlinear inverse problem, we employ the efficient Ensemble Kalman Inversion scheme, a highly parallelizable, iteratively regularizing optimizer that uses the ensemble Kalman filter to perform a derivative-free approximation of the general iteratively regularized Levenberg–Marquardt method. The combination of a model specification framework that explicitly encodes geological structure and a robust, derivative-free optimizer enables the solution of complex inverse problems involving non-differentiable forward solvers and significant a priori knowledge. We illustrate the model specification framework using synthetic and real data examples of near-surface seismic tomography using the factored eikonal fast marching method as a forward solver for first arrival traveltimes. The geometrical and level set framework allows us to describe geophysical hypotheses in concrete terms, and then optimize and test these hypotheses, helping us to answer targeted geophysical questions.


2019 ◽  
Vol 26 (11) ◽  
pp. 112706 ◽  
Author(s):  
M. F. Kasim ◽  
T. P. Galligan ◽  
J. Topp-Mugglestone ◽  
G. Gregori ◽  
S. M. Vinko

2019 ◽  
Vol 489 (3) ◽  
pp. 3236-3250 ◽  
Author(s):  
M A Price ◽  
J D McEwen ◽  
X Cai ◽  
T D Kitching (for the LSST Dark Energy Science Collaboration)

ABSTRACT Weak lensing convergence maps – upon which higher order statistics can be calculated – can be recovered from observations of the shear field by solving the lensing inverse problem. For typical surveys this inverse problem is ill-posed (often seriously) leading to substantial uncertainty on the recovered convergence maps. In this paper we propose novel methods for quantifying the Bayesian uncertainty in the location of recovered features and the uncertainty in the cumulative peak statistic – the peak count as a function of signal-to-noise ratio (SNR). We adopt the sparse hierarchical Bayesian mass-mapping framework developed in previous work, which provides robust reconstructions and principled statistical interpretation of reconstructed convergence maps without the need to assume or impose Gaussianity. We demonstrate our uncertainty quantification techniques on both Bolshoi N-body (cluster scale) and Buzzard V-1.6 (large-scale structure) N-body simulations. For the first time, this methodology allows one to recover approximate Bayesian upper and lower limits on the cumulative peak statistic at well-defined confidence levels.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. G191-G196 ◽  
Author(s):  
Anna Avdeeva ◽  
Dmitry Avdeev

We apply a limited-memory quasi-Newton (QN) method to the 1D magnetotelluric (MT) inverse problem. Using this method we invert a realistic synthetic MT impedance data set calculated for a layered earth model. The calculation of gradients based on the adjoint method speeds up the inverse problem solution many times. In addition, regularization stabilizes the QN inversion result and a few correction pairs are sufficient to produce reasonable results. Comparison with the L-BFGS-B algorithm shows similar convergence rates. This study is a first step towards the solution of large-scale electromagnetic problems, with a full treatment of the 3D conductivity structure of the earth.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251926
Author(s):  
Taewon Cho ◽  
Hodjat Pendar ◽  
Julianne Chung

In many physiological systems, real-time endogeneous and exogenous signals in living organisms provide critical information and interpretations of physiological functions; however, these signals or variables of interest are not directly accessible and must be estimated from noisy, measured signals. In this paper, we study an inverse problem of recovering gas exchange signals of animals placed in a flow-through respirometry chamber from measured gas concentrations. For large-scale experiments (e.g., long scans with high sampling rate) that have many uncertainties (e.g., noise in the observations or an unknown impulse response function), this is a computationally challenging inverse problem. We first describe various computational tools that can be used for respirometry reconstruction and uncertainty quantification when the impulse response function is known. Then, we address the more challenging problem where the impulse response function is not known or only partially known. We describe nonlinear optimization methods for reconstruction, where both the unknown model parameters and the unknown signal are reconstructed simultaneously. Numerical experiments show the benefits and potential impacts of these methods in respirometry.


Sign in / Sign up

Export Citation Format

Share Document