Modal assurance distribution of multivariate signals for modal identification of time-varying dynamic systems

2021 ◽  
Vol 148 ◽  
pp. 107136
Author(s):  
Said Quqa ◽  
Luca Landi ◽  
Pier Paolo Diotallevi
2020 ◽  
Vol 16 (3) ◽  
pp. 255-269
Author(s):  
Enrico Bozzo ◽  
Paolo Vidoni ◽  
Massimo Franceschet

AbstractWe study the stability of a time-aware version of the popular Massey method, previously introduced by Franceschet, M., E. Bozzo, and P. Vidoni. 2017. “The Temporalized Massey’s Method.” Journal of Quantitative Analysis in Sports 13: 37–48, for rating teams in sport competitions. To this end, we embed the temporal Massey method in the theory of time-varying averaging algorithms, which are dynamic systems mainly used in control theory for multi-agent coordination. We also introduce a parametric family of Massey-type methods and show that the original and time-aware Massey versions are, in some sense, particular instances of it. Finally, we discuss the key features of this general family of rating procedures, focusing on inferential and predictive issues and on sensitivity to upsets and modifications of the schedule.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Chang-Sheng Lin ◽  
Dar-Yun Chiang ◽  
Tse-Chuan Tseng

Modal Identification is considered from response data of structural systems under nonstationary ambient vibration. The conventional autoregressive moving average (ARMA) algorithm is applicable to perform modal identification, however, only for stationary-process vibration. The ergodicity postulate which has been conventionally employed for stationary processes is no longer valid in the case of nonstationary analysis. The objective of this paper is therefore to develop modal-identification techniques based on the nonstationary time series for linear systems subjected to nonstationary ambient excitation. Nonstationary ARMA model with time-varying parameters is considered because of its capability of resolving general nonstationary problems. The parameters of moving averaging (MA) model in the nonstationary time-series algorithm are treated as functions of time and may be represented by a linear combination of base functions and therefore can be used to solve the identification problem of time-varying parameters. Numerical simulations confirm the validity of the proposed modal-identification method from nonstationary ambient response data.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
M. De la Sen

This paper formulates sufficiency-type global stability and asymptotic stability results for, in general, nonlinear time-varying dynamic systems with state-trajectory solution-dependent parameterizations. The stability proofs are based on obtaining sufficiency-type conditions which guarantee that either the norms of the solution trajectory or alternative interval-type integrals of the matrix of dynamics of the higher-order than linear terms do not grow faster than their available supremum on the preceding time intervals. Some extensions are also given based on the use of a truncated Taylor series expansion of chosen truncation order with multiargument integral remainder for the dynamics of the differential system.


Sign in / Sign up

Export Citation Format

Share Document