Identification and uncertainty quantification of structural flexibility for reliability analysis

2022 ◽  
Vol 163 ◽  
pp. 108104
Author(s):  
Panjie Li ◽  
Jian Zhang
Author(s):  
Zequn Wang ◽  
Mingyang Li

Abstract Conventional uncertainty quantification methods usually lacks the capability of dealing with high-dimensional problems due to the curse of dimensionality. This paper presents a semi-supervised learning framework for dimension reduction and reliability analysis. An autoencoder is first adopted for mapping the high-dimensional space into a low-dimensional latent space, which contains a distinguishable failure surface. Then a deep feedforward neural network (DFN) is utilized to learn the mapping relationship and reconstruct the latent space, while the Gaussian process (GP) modeling technique is used to build the surrogate model of the transformed limit state function. During the training process of the DFN, the discrepancy between the actual and reconstructed latent space is minimized through semi-supervised learning for ensuring the accuracy. Both labeled and unlabeled samples are utilized for defining the loss function of the DFN. Evolutionary algorithm is adopted to train the DFN, then the Monte Carlo simulation method is used for uncertainty quantification and reliability analysis based on the proposed framework. The effectiveness is demonstrated through a mathematical example.


Author(s):  
Zhen Hu ◽  
Sankaran Mahadevan ◽  
Xiaoping Du

Limited data of stochastic load processes and system random variables result in uncertainty in the results of time-dependent reliability analysis. An uncertainty quantification (UQ) framework is developed in this paper for time-dependent reliability analysis in the presence of data uncertainty. The Bayesian approach is employed to model the epistemic uncertainty sources in random variables and stochastic processes. A straightforward formulation of UQ in time-dependent reliability analysis results in a double-loop implementation procedure, which is computationally expensive. This paper proposes an efficient method for the UQ of time-dependent reliability analysis by integrating the fast integration method and surrogate model method with time-dependent reliability analysis. A surrogate model is built first for the time-instantaneous conditional reliability index as a function of variables with imprecise parameters. For different realizations of the epistemic uncertainty, the associated time-instantaneous most probable points (MPPs) are then identified using the fast integration method based on the conditional reliability index surrogate without evaluating the original limit-state function. With the obtained time-instantaneous MPPs, uncertainty in the time-dependent reliability analysis is quantified. The effectiveness of the proposed method is demonstrated using a mathematical example and an engineering application example.


Author(s):  
Zhen Hu ◽  
Sankaran Mahadevan ◽  
Xiaoping Du

One of the essential steps in time-dependent reliability analysis is the characterization of stochastic load processes and system random variables based on experimental or historical data. Limited data results in uncertainty in the modeling of random variables and stochastic loadings. The uncertainty in random variable and stochastic load models later causes uncertainty in the results of reliability analysis. An uncertainty quantification framework is developed in this paper for time-dependent reliability analysis. The effects of two kinds of uncertainty sources, namely data uncertainty and model uncertainty on the results of time-dependent reliability analysis are investigated. The Bayesian approach is employed to model the epistemic uncertainty sources in random variables and stochastic processes. A straightforward formulation of uncertainty quantification in time-dependent reliability analysis results in a double-loop implementation, which is computationally expensive. Therefore, this paper builds a surrogate model for the conditional reliability index in terms of variables with imprecise parameters. Since the conditional reliability index is independent of the epistemic uncertainty, the surrogate model is applicable for any realizations of the epistemic uncertainty. Based on the surrogate model, the uncertainty in time-dependent reliability analysis is quantified without evaluating the original limit-state function, which increases the efficiency of uncertainty quantification. The effectiveness of the proposed method is demonstrated using a mathematical example and an engineering application example.


2017 ◽  
Vol 70 ◽  
pp. 300-309 ◽  
Author(s):  
Rongqiao Wang ◽  
Xi Liu ◽  
Dianyin Hu ◽  
Fanchao Meng ◽  
Da Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document