passive safety systems
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Ron Schindler ◽  
Michael Jänsch ◽  
András Bálint ◽  
Heiko Johannsen

Heavy goods vehicles (HGVs) are involved in 4.5% of police-reported road crashes in Europe and 14.2% of fatal road crashes. Active and passive safety systems can help to prevent crashes or mitigate the consequences but need detailed scenarios based on analysis of region-specific data to be designed effectively; however, a sufficiently detailed overview focusing on long-haul trucks is not available for Europe. The aim of this paper is to give a comprehensive and up-to-date analysis of crashes in the European Union that involve HGVs weighing 16 tons or more (16 t+). The identification of the most critical scenarios and their characteristics is based on a three-level analysis, as follows. Crash statistics based on data from the Community Database on Accidents on the Roads in Europe (CARE) provide a general overview of crashes involving HGVs. These results are complemented by a more detailed characterization of crashes involving 16 t+ trucks based on national road crash data from Italy, Spain, and Sweden. This analysis is further refined by a detailed study of crashes involving 16 t+ trucks in the German In-Depth Accident Study (GIDAS), including a crash causation analysis. The results show that most European HGV crashes occur in clear weather, during daylight, on dry roads, outside city limits, and on nonhighway roads. Three main scenarios for 16 t+ trucks are characterized in-depth: rear-end crashes in which the truck is the striking partner, conflicts during right turn maneuvers of the truck with a cyclist riding alongside, and pedestrians crossing the road in front of the truck. Among truck-related crash causes, information admission failures (e.g., distraction) were the main crash causation factor in 72% of cases in the rear-end striking scenario while information access problems (e.g., blind spots) were present for 72% of cases in the cyclist scenario and 75% of cases in the pedestrian scenario. The three levels of data analysis used in this paper give a deeper understanding of European HGV crashes, in terms of the most common crash characteristics on EU level and very detailed descriptions of both kinematic parameters and crash causation factors for the above scenarios. The results thereby provide both a global overview and sufficient depth of analysis of the most relevant cases and aid safety system development.


Author(s):  
Manas Metar

Abstract: The future of automotive relies on the mechatronic and electronic systems. The worldwide growth of automotive towards electronic systems suggests that driverless cars would soon be the common commuters. With such improvements safety of the passengers becomes first priority for the manufacturers. Nowadays automobiles come with high end technologies and quick responsive electronic systems. In addition to the passive safety systems, active safety systems definitely avoid collision thereby reducing the chances of injury and death. This project shows the working of an active safety system that is collision avoidance system. To create the model, TINKERCAD software has been used and a detailed working is explained. As a result, the system detects traffic and can alert the driver and stop the vehicle before meeting the collision. Keywords: Active Safety System, Arduino, Tinkercad, Vehicle Electronics System, Automotive Safety System, Collision Avoidance System, Self-Driving Car, Driverless Vehicle.


Author(s):  
Dinh Tan Ngoc

Designing a vehicle is a complex multi-stage process and involves many factors which required carefully in calculation such as: the vehicle's dynamic, active and passive safety systems, connections on the vehicle, arrangement of devices, etc. The same principles when we design an electric vehicle. In this paper, the researcher showed  a method to calculate battery system on an electric vehicle from a vehicle that using an internal combustion engine and still ensure the same output power as the original car. The car only uses Li-ion batteries, the car can travel on a single charge is nearly 300 km. The results have calculated the battery system to satisfy the capacity of the original vehicle. Through the calculated results can be applied on real cars.


Author(s):  
Satya Prakash Saraswat ◽  
Dipanjan Ray ◽  
Gaurav Mishra ◽  
Deepak Yadav ◽  
Vikesh Singh Bhadouria ◽  
...  

Abstract The Economic Simplified Boiling Water Reactor (ESBWR) is a boiling water nuclear reactor of Generation III+. The US Nuclear Regulatory Commission (NRC) approved the ESBWR design as the world's best light-water nuclear reactor in 2014. It has the lowest core damage frequency (industry standard indicator of safety) of any Generation III or III+ reactor. It can cool automatically for more than seven days without using electricity or human intervention. During the operation, the ESBWR is designed to produce electricity while emitting almost no greenhouse gases. The energy generated by an ESBWR will prevent the emission of approximately 7.5 million metric tons of CO2 per year compared to standard electricity production on the US grid. The analysis present in this paper aimed to characterize the thermal-hydraulic simulations of full-scale ESBWR design. The analysis presented will help in recognizing the improvement needed in the reactor design and its passive safety systems. The analysis is performed for normal steady state and postulated design basis accident scenarios . The simulation results obtained by the code REALP/SCDAPSIM/MOD3.4 are compared with the TRACG and MELCOR code results to determine the code predictability and accuracy under accident conditions of the newly proposed design of the ESBWR nuclear reactor. It has been also demonstrated that for the postulated accident conditions the design of passive safety systems are capable to capture the accident progression without any active power.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4688
Author(s):  
Francesco Di Maio ◽  
Nicola Pedroni ◽  
Barnabás Tóth ◽  
Luciano Burgazzi ◽  
Enrico Zio

Passive systems are fundamental for the safe development of Nuclear Power Plant (NPP) technology. The accurate assessment of their reliability is crucial for their use in the nuclear industry. In this paper, we present a review of the approaches and procedures for the reliability assessment of passive systems. We complete the work by discussing the pending open issues, in particular with respect to the need of novel sensitivity analysis methods, the role of empirical modelling and the integration of passive safety systems assessment in the (static/dynamic) Probabilistic Safety Assessment (PSA) framework.


Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 244-255
Author(s):  
S. H. Abdel-Latif ◽  
A. M. Refaey

Abstract The AP600 is a Westinghouse Advanced Passive PWR with a two–loop 1 940 MWt. This reactor is equipped with advanced passive safety systems which are designed to operate automatically at desired set-points. On the other hand, the failure or nonavailability to operate of any of the passive safety systems may affect reactor safety. In this study, modeling and nodalization of primary and secondary loops, and all passive reactor cooling systems are conducted and a 10-inch cold leg break LOCA is analyzed using ATHLET 3.1A Code. During loss of coolant accident in which the passive safety system failure or nonavailability are considered, four different scenarios are assumed. Scenario 1 with the availability of all passive systems, scenario 2 is failure of one of the accumulators to activate, scenario 3 is without actuation of the automatic depressurization system (ADS) stages 1–3, and scenario 4 is without actuation of ADS stage 4. Results indicated that the actuation of passive safety systems provide sufficient core cooling and thus could mitigate the accidental consequence of LOCAs. Failure of one accumulator during LOCA causes early actuation of ADS and In-Containment Refueling Water Storage Tank (IRWST). In scenario 3 where the LOCA without ADS stages 1–3 actuations, the depressurization of the primary system is relatively slow and the level of the core coolant drops much earlier than IRWST actuation. In scenario 4 where the accident without ADS stage-4 activation, results in slow depressurization and the level of the core coolant drops earlier than IRWST injection. During the accident process, the core uncovery and fuel heat up did not happen and as a result the safety of AP600 during a 10-in. cold leg MBLOCA was established. The relation between the cladding surface temperature and the primary pressure with the actuation signals of the passive safety systems are compared with that of RELAP5/Mode 3.4 code and a tolerable agreement was obtained.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 100
Author(s):  
Stephan Kelm ◽  
Manohar Kampili ◽  
Xiongguo Liu ◽  
Allen George ◽  
Daniel Schumacher ◽  
...  

The severe reactor accident at Fukushima Daiichi Nuclear Power Plant (2011) has confirmed the need to understand the flow and transport processes of steam and combustible gases inside the containment and connected buildings. Over several years, Computational Fluid Dynamics (CFD) models, mostly based on proprietary solvers, have been developed to provide highly resolved insights; supporting the assessment of effectiveness of safety measures and possible combustion loads challenging the containment integrity. This paper summarizes the design and implementation of containmentFOAM, a tailored solver and model library based on OpenFOAM®. It is developed in support of Research & Development related to containment flows, mixing processes, pressurization, and assessment of passive safety systems. Based on preliminary separate-effect verification and validation results, an application oriented integral validation case is presented on the basis of an experiment on gas mixing and H2 mitigation by means of passive auto-catalytic recombiners in the THAI facility (Becker Technologies, Eschborn, Germany). The simulation results compare well with the experimental data and demonstrate the general applicability of containmentFOAM for technical scale analysis. Concluding the paper, the strategy for dissemination of the code and measures implemented to minimize potential user errors are outlined.


2021 ◽  
Vol 247 ◽  
pp. 07007
Author(s):  
Govatsa Acharya ◽  
Fredrik Dehlin ◽  
Sara Bortot ◽  
Ignas Mickus

Passive safety systems in a nuclear reactor allow to simplify the overall plant design, beside improving economics and reliability, which are considered to be among the salient goals of advanced Generation IV reactors. This work focuses on investigating the application of a self-actuated, gravity-driven shutdown system in a small lead-cooled fast reactor and its dynamic response to an initiating event. The reactor thermal-hydraulics and neutronics assessment were performed in advance. According to a first-order approximation approach, the passive insertion of shutdown assembly was assumed to be influenced primarily by three forces: gravitational, buoyancy and fluid drag. A system of kinematic equations were formulated a priori and a MATLAB program was developed to determine the dynamics of the assembly. Identifying the delicate nature of the balance of forces, sensitivity analysis for coolant channel velocities and assembly foot densities yielded an optimal system model that resulted in successful passive shutdown. Transient safety studies, using the multi-point dynamics code BELLA, showed that the gravity-driven system acts remarkably well, even when accounting for a brief delay in self-actuation. Ultimately the reactor is brought to a sub-critical state while respecting technological constraints.


2020 ◽  
Vol 2020 (4) ◽  
pp. 109-116
Author(s):  
O.F. Lednianskyi ◽  
◽  
S.P. Bisyk ◽  
A.F. Sanin ◽  
V.P. Poshyvalov ◽  
...  

This work reports the results of experimental studies on the applicability of porous pressings of aluminum alloys to passive safety systems. The porous pressings were made from aluminum and aluminum alloy powders with a particle size up to 200 ?m using a hydraulic press. The porosity was varied by varying the pressure in the press hydrosystem and the pressing force. The specimens were not sintered, and no plasticizer was added. To determine which specimen characteristic, the mass or the porosity, is more important, specimens of the same mass (0.01 kg) were used [the deviation did not exceed (2.7 ? 2.8) % ]. To determine the impact absorption ability of the porous pressings of aluminum and aluminum alloy powders, a vertical impact testing machine was used. The ram mass was 22.5 kg (weight 220 N), the fall speed was 5 m/s, and the fall energy was 300 J. The impact absorption ability of the porous pressings was determined by comparing the accelerations and rebound height of the ram in the presence of a porous pressing with their calculated free-fall values. The experiments showed that the use of specimens of maximum porosity decreases the impact energy by the value of the plastic work of deformation and the fracture energy. A comparison of the performance of different specimens showed that the energy absorption ability increases with porosity. As demonstrated by the experiments, porous pressings of aluminum and aluminum alloys can be used as energy -absorbing elements of passive safety systems for commercial and armored combat vehicles, and the impact absorption ability of porous fillers, in particular porous pressings of aluminum and aluminum alloys, can be determined using vertical impact testing machines. Using porous pressings of aluminum and aluminum alloys as an energy-absorbing material decreases the impact acceleration by a factor of 30 to 85 at an impact speed up to 5 m/s. The ability of a pressing to reduce the impact acceleration depends on its dimensions and porosity to a greater extent than on its mass. The greatest decrease in impact acceleration is provided by porous pressings of maximum porosity, in which the impact energy is converted to the plastic work of deformation and the fracture energy.


Sign in / Sign up

Export Citation Format

Share Document