Spatial mode converter of higher order modes by coupling between two different fibers inserted in a microstructured cane

2021 ◽  
Vol 66 ◽  
pp. 102652
Author(s):  
Marwa Sammouda ◽  
Faouzi Bahloul ◽  
Philippe Di Bin
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alex. S. Jenkins ◽  
Lara San Emeterio Alvarez ◽  
Samh Memshawy ◽  
Paolo Bortolotti ◽  
Vincent Cros ◽  
...  

AbstractNiFe-based vortex spin-torque nano-oscillators (STNO) have been shown to be rich dynamic systems which can operate as efficient frequency generators and detectors, but with a limitation in frequency determined by the gyrotropic frequency, typically sub-GHz. In this report, we present a detailed analysis of the nature of the higher order spin wave modes which exist in the Super High Frequency range (3–30 GHz). This is achieved via micromagnetic simulations and electrical characterisation in magnetic tunnel junctions, both directly via the spin-diode effect and indirectly via the measurement of the coupling with the gyrotropic critical current. The excitation mechanism and spatial profile of the modes are shown to have a complex dependence on the vortex core position. Additionally, the inter-mode coupling between the fundamental gyrotropic mode and the higher order modes is shown to reduce or enhance the effective damping depending upon the sense of propagation of the confined spin wave.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xin Zhang ◽  
Shoufei Gao ◽  
Yingying Wang ◽  
Wei Ding ◽  
Pu Wang

Abstract High-power fiber lasers have experienced a dramatic development over the last decade. Further increasing the output power needs an upscaling of the fiber mode area, while maintaining a single-mode output. Here, we propose an all-solid anti-resonant fiber (ARF) structure, which ensures single-mode operation in broadband by resonantly coupling higher-order modes into the cladding. A series of fibers with core sizes ranging from 40 to 100 μm are proposed exhibiting maximum mode area exceeding 5000 μm2. Numerical simulations show this resonant coupling scheme provides a higher-order mode (mainly TE01, TM01, and HE21) suppression ratio of more than 20 dB, while keeping the fundamental mode loss lower than 1 dB/m. The proposed structure also exhibits high tolerance for core index depression.


1996 ◽  
Vol 17 (11) ◽  
pp. 1957-1967 ◽  
Author(s):  
W. M. Shi ◽  
K. F. Tsang ◽  
C. N. Wong ◽  
W. X. Zhang

2006 ◽  
Vol 36 (5) ◽  
pp. 827-846 ◽  
Author(s):  
Toru Miyama ◽  
Julian P. McCreary ◽  
Debasis Sengupta ◽  
Retish Senan

Abstract Variability of the wind field over the equatorial Indian Ocean is spread throughout the intraseasonal (10–60 day) band. In contrast, variability of the near-surface υ field in the eastern, equatorial ocean is concentrated at biweekly frequencies and is largely composed of Yanai waves. The excitation of this biweekly variability is investigated using an oceanic GCM and both analytic and numerical versions of a linear, continuously stratified (LCS) model in which solutions are represented as expansions in baroclinic modes. Solutions are forced by Quick Scatterometer (QuikSCAT) winds (the model control runs) and by idealized winds having the form of a propagating wave with frequency σ and wavenumber kw. The GCM and LCS control runs are remarkably similar in the biweekly band, indicating that the dynamics of biweekly variability are fundamentally linear and wind driven. The biweekly response is composed of local (nonradiating) and remote (Yanai wave) parts, with the former spread roughly uniformly along the equator and the latter strengthening to the east. Test runs to the numerical models separately forced by the τx and τy components of the QuikSCAT winds demonstrate that both forcings contribute to the biweekly signal, the response forced by τy being somewhat stronger. Without mixing, the analytic spectrum for Yanai waves forced by idealized winds has a narrowband (resonant) response for each baroclinic mode: Spectral peaks occur whenever the wavenumber of the Yanai wave for mode n is sufficiently close to kw and they shift from biweekly to lower frequencies with increasing modenumber n. With mixing, the higher-order modes are damped so that the largest ocean response is restricted to Yanai waves in the biweekly band. Thus, in the LCS model, resonance and mixing act together to account for the ocean's favoring the biweekly band. Because of the GCM's complexity, it cannot be confirmed that vertical mixing also damps its higher-order modes; other possible processes are nonlinear interactions with near-surface currents, and the model's low vertical resolution below the thermocline. Test runs to the LCS model show that Yanai waves from several modes superpose to form a beam (wave packet) that carries energy downward as well as eastward. Reflections of such beams from the near-surface pycnocline and bottom act to maintain near-surface energy levels, accounting for the eastward intensification of the near-surface, equatorial υ field in the control runs.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 463-472 ◽  
Author(s):  
Mehmet Kelleci ◽  
Hande Aydogmus ◽  
Levent Aslanbas ◽  
Selcuk Oguz Erbil ◽  
M. Selim Hanay

We have simultaneously used the first two modes of a microwave resonant sensor integrated with microfluidics to size and locate droplets and cells. Higher-order modes can yield further spatial details of cells.


Sign in / Sign up

Export Citation Format

Share Document