Paleoenvironment of the Folsom archaeological site, New Mexico, USA, approximately 10,500 14C yr B.P. as inferred from the stable isotope composition of fossil land snail shells

2005 ◽  
Vol 63 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Meena Balakrishnan ◽  
Crayton J. Yapp ◽  
David J. Meltzer ◽  
James L. Theler

Well-preserved aragonitic land snail shells (Vallonia) from late Pleistocene Eolian sediment in the Folsom archaeological site in New Mexico exhibit an overall decrease of δ18OPDB from maximum values of +2.7‰ (more positive than modern) to younger samples with lower average values of about −3.6‰ (within the modern range). The age of the samples (approximately 10,500 14C yr B.P.) suggests that the decrease in δ18O may manifest climatic changes associated with the Younger Dryas. Some combination of increased relative humidity and cooler temperatures with decreased δ18O of precipitation during the times of snail activity can explain the decrease in shell δ18O. A well-known Paleoindian bison kill occurred at the Folsom site during this inferred environmental transition.Average δ13C values of the aragonite shells of the fossil Vallonia range from −7.3 to −6.0‰ among different archaeological levels and are not as negative as modern values. This suggests that the proportion of C4 vegetation at the Folsom site approximately 10,500 14C yr B.P. was greater than at present; a result which is consistent with other evidence for higher proportions of C4 plants in the region at that time.

2020 ◽  
Author(s):  
Matthias Cuntz ◽  
Lucas A Cernusak ◽  

<p>Several important isotopic biomarkers derive at least part of their signal from the stable isotope composition of leaf water (e.g., leaf wax δ<sup>2</sup>H, cellulose δ<sup>2</sup>H and δ<sup>18</sup>O, lignin δ<sup>18</sup>O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls a given leaf water stable isotope signal. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water <sup>2</sup>H concentration could differ from that of <sup>18</sup>O concentration. Our dataset comprises 690 observations from 35 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal primarily take place. The Craig-Gordon equation was generally a good predictor for daytime bulk leaf water stable isotope composition for both δ<sup>2</sup>H (R<sup>2</sup>=0.86, p<0.001) and δ<sup>18</sup>O (R<sup>2</sup>=0.63, p<0.001). It showed about 10% admixture of source water was caused by unenriched water pools such as leaf veins or the Péclet effect. Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of source water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of δ<sup>2</sup>H and δ<sup>18</sup>O are predominantly driven by different environmental variables: leaf water δ<sup>2</sup>H correlated most strongly with the δ<sup>2</sup>H of source water (R<sup>2</sup>=0.68, p<0.001) and atmospheric vapour (R<sup>2</sup>=0.63, p<0.001), whereas leaf water δ<sup>18</sup>O correlated most strongly with air relative humidity (R<sup>2</sup>=0.46, p<0.001). We conclude that these two isotopic signals of leaf water are not simply mirror images of the same environmental information, but carry distinct signals of different climate factors, with crucial implications for the interpretation of downstream isotopic biomarkers.</p>


2007 ◽  
Vol 254 (3-4) ◽  
pp. 550-560 ◽  
Author(s):  
Andre Carlo Colonese ◽  
Giovanni Zanchetta ◽  
Anthony E. Fallick ◽  
Fabio Martini ◽  
Giuseppe Manganelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document