A relative sea-level history for Arviat, Nunavut, and implications for Laurentide Ice Sheet thickness west of Hudson Bay

2014 ◽  
Vol 82 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Karen M. Simon ◽  
Thomas S. James ◽  
Donald L. Forbes ◽  
Alice M. Telka ◽  
Arthur S. Dyke ◽  
...  

AbstractThirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.

1990 ◽  
Vol 34 (3) ◽  
pp. 296-305 ◽  
Author(s):  
Peter U. Clark ◽  
William W. Fitzhugh

AbstractThe age of the marine limit and associated deglaciation has been estimated from relative sea-level curves for the Hopedale and Nain areas of the central Labrador coast as approximately 7600 ± 200 and 8500 ± 200 yr ago, respectively. These ages indicate that the ice margin remained on the coast for up to 3000 yr longer than previously estimated. Because the central coast is due east of glacial lakes Naskaupi and McLean, the earliest the lakes could have formed was <8500 ± 200 yr ago, with their largest phases being fully established only after 7600 ± 200 yr ago. This suggests that the age of the lakes, and associated deglaciation of the central Labrador-Ungava region, is younger by at least 1500 yr than previously estimated. A late-glacial marine-based ice mass in Ungava Bay that dammed the lakes collapsed ca. 7000 yr ago. Within this time frame, therefore, the glacial lakes only existed for <500 yr. The persistence of the Laurentide Ice Sheet margin on the central Labrador coast until 7600 yr ago probably restricted the northward movement of early prehistoric people into northern Labrador.


2003 ◽  
Vol 60 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Antony J. Long ◽  
David H. Roberts ◽  
Morten Rasch

AbstractRelative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300–9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt.


1987 ◽  
Vol 28 (2) ◽  
pp. 196-209 ◽  
Author(s):  
Louise Filion

AbstractStabilized parabolic dunes in the central St. Lawrence Lowland are oriented NE-SW, in the postulated direction of dune-building winds coming from anticyclonic air circulation induced by the retreating Laurentide Ice Sheet about 10,000 yr ago. The eolian chronology reconstructed from several sections in mixed dune-peatland environments indicates that postglacial plant colonization, characterized by a fortuitous assemblage of arctic-subarctic and boreal elements, preceded dune formation during Champlain Sea regression around 10,000 yr B.P. Confined peatlands and small forests were buried by eolian sands between 10,000 and 7500 yr B.P. under dry and temperate conditions. This eolian episode lasted about 2500 14C yr and ended when cyclonic air circulation similar to the present humid climatic regime was established following the breakup and disappearance of the Laurentide Ice Sheet over Hudson Bay and peripheral areas. Dune stabilization, through paludification of well-drained eolian sands about 7500 yr B.P., suggests a major shift in climate toward wetter conditions that have been characteristic during most of the Holocene in eastern North America. Minor eolian erosion induced by wildfire was recorded during late Holocene time (about 1250 yr B.P.). Anthropogenic perturbation (logging and agriculture practice) was also responsible for recent very local eolian activity.


2009 ◽  
Vol 24 (4) ◽  
pp. 345-359 ◽  
Author(s):  
Antony J. Long ◽  
Sarah A. Woodroffe ◽  
Sue Dawson ◽  
David H. Roberts ◽  
Charlotte L. Bryant

2020 ◽  
Author(s):  
Carsten Ankjær Ludwigsen ◽  
Ole Baltazar Andersen ◽  
Shfaqat Abbas Khan ◽  
Ben Marzeion

&lt;p&gt;Vertical Land Motion (VLM) is a composite of several earth dynamics caused by changes of earth&amp;#8217;s surface load or tectonics. In most of the Northern Hemisphere mainly two dynamics are causing large scale vertical land motion &amp;#8211; Glacial Isostatic Adjustment (GIA), which is the rebound from the loading of the latest glacial cycle (10-30 kyr ago) and elastic rebound from contemporary land ice changes, that happens immediately when loading is removed from the surface.&lt;/p&gt;&lt;p&gt;With glacial mass balance data and observations of the Greenland Ice Sheet we have created an Northern Hemisphere ice history from 1996-2015 that is used to make a model for elastic VLM caused by ice mass loss that varies in time.&lt;/p&gt;&lt;p&gt;It shows that, in most cases, the elastic VLM model is able to close gaps between GIA induced VLM and GNSS-measured VLM, giving confidence that the combined GIA + elastic VLM-model is a better alternative to adjust relative sea level measurements from tide-gauges (where no (reliable) GNSS-data is available) to absolute sea level than 'just' a GIA-model. In particular for Arctic Sea Level, where elastic uplifts are prominent and large coastal regions have limited in-situ data available, the VLM-model is useful for correcting Tide Gauge measurements and thereby validate satellite altimetry observed sea levels, which is challenged by sea ice in the coastal Arctic.&lt;/p&gt;&lt;p&gt;Furthermore, our elastic VLM-model shows, that the uplift caused by the melt of the Greenland Ice Sheet (GIS) is far-reaching and even in the North Sea region or along the North American coast show uplift rates in the order of 0.4-0.7 mm/yr from 1996-2015. Interestingly, this is roughly equivalent to Greenland&amp;#8217;s sea level contribution in the same period, thereby 'neutralizing' the melt of GIS. As GIS ice mass loss continues to accelerate, the elastic uplift will have increased importance for coastal regions and future relative sea level projections. Unfortunately, the opposite effect is true for the southern hemisphere or vice versa if Antarctic ice sheet mass loss would increase.&lt;/p&gt;


1987 ◽  
Vol 24 (4) ◽  
pp. 591-601 ◽  
Author(s):  
Arthur S. Dyke

Seven new radiocarbon dates pertaining to deglaciation of northern Prince of Wales Island place the margin of the Laurentide Ice Sheet on the island by 11 000 BP. This requires a revision of the proposed age for the Viscount Melville Sound Ice Shelf of 10 300 – 9880 BP. A revised age of 11 300 – 11 000 BP is suggested.The new dates also require revisions of the proposed Wisconsinan and Holocene history of Banks Island. Shells thought to have been thrust onshore to an elevation of 88 m by the ice shelf on northern Banks Island after 10 600 BP are reinterpreted as undisturbed postglacial marine shells recording a relative sea level of 88 m or more. This, in turn, suggests that the East Coast Sea and Jesse Till are of Late Wisconsinan rather than Early Wisconsinan age and that the Late Wisconsinan glacial limit on Banks Island as figured on the 1968 Glacial Map of Canada, rather than on recent revisions, is essentially correct.


Sign in / Sign up

Export Citation Format

Share Document