New observations on the relative sea level and deglacial history of Greenland from Innaarsuit, Disko Bugt

2003 ◽  
Vol 60 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Antony J. Long ◽  
David H. Roberts ◽  
Morten Rasch

AbstractRelative sea level (RSL) data derived from isolation basins at Innaarsuit, a site on the south shores of the large marine embayment of Disko Bugt, West Greenland, record rapid RSL fall from the marine limit (ca. 108 m) at 10,300–9900 cal yr B.P. to reach the present sea level at 3500 cal yr B.P. Since 2000 cal yr B.P., RSL rose ca. 3 m to the present. When compared with data from elsewhere in Disko Bugt, our results suggest that the embayment was deglaciated later and more quickly than previously thought, at or slightly before 10,300 cal yr B.P. The northern part of Disko Bugt experienced less rebound (ca. 10 m at 6000 cal yr B.P.) compared with areas to the south. Submergence during the late Holocene supports a model of crustal down-warping as a result of renewed ice-sheet growth during the neoglacial. There is little evidence for west to east differences in crustal rebound across the southern shores of Disko Bugt.

2009 ◽  
Vol 24 (4) ◽  
pp. 345-359 ◽  
Author(s):  
Antony J. Long ◽  
Sarah A. Woodroffe ◽  
Sue Dawson ◽  
David H. Roberts ◽  
Charlotte L. Bryant

2014 ◽  
Vol 82 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Karen M. Simon ◽  
Thomas S. James ◽  
Donald L. Forbes ◽  
Alice M. Telka ◽  
Arthur S. Dyke ◽  
...  

AbstractThirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.


2020 ◽  
Vol 63 (6) ◽  
Author(s):  
Eleni Kolaiti ◽  
Nikos Mourtzas

Geomorphological and archaeological indicators of former sea levels along the coast of Paros enabled us to determine and date six distinct sea level stands and the relative sea level (rsl) changes between them, as well as plot the rsl curve for the last 6,300 years. The Late Holocene history of the rsl change in Paros began with the sea level at 4.90 ± 0.10 m below mean sea level (bmsl) dated to the Late Neolithic period (4300 BC-3700 BC). The next sea level at 3.50 ± 0.20 m bmsl is dated to the Geometric and Archaic period of the Cyclades (1050 BC-490 BC) and most probably lasted during the Hellenistic period (323-146 BC). The sea level at 2.40 ± 0.25 m bmsl is dated to the Roman period (146-400 AD) and the next sea level at 1.35 ± 0.20 m bmsl to the Venetian period of the Cyclades (1207-1537). The sea level at 0.80 ± 0.10 m bmsl is dated to after the Venetian period, during the Ottoman rule of the island (1537-1821). The youngest sea level stand at 0.45 ± 0.10 m is attributed to the recent change in the sea level after the late 19th c. onward. The separation between glacio-hydro-isostatic signals and the observed rsl change on Paros Island, in an area of seismic quiescence, demonstrates a significant tectonic component in the rsl changes. Moreover, the sea level stands deduced from Paros in comparison with those from the northern Cyclades indicate a uniform tectonic behaviour of the entire northern and central section of the Cyclades plateau.


2005 ◽  
Vol 63 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Elie Verleyen ◽  
Dominic A. Hodgson ◽  
Glenn A. Milne ◽  
Koen Sabbe ◽  
Wim Vyverman

We present a relative sea-level (RSL) history, constrained by AMS radiocarbon-dated marine–freshwater transitions in isolation basins from a site adjacent to the Lambert Glacier, East Antarctica. The RSL data suggest an initial ice retreat between c. 15,370 and 12,660 cal yr B.P Within this period, meltwater pulse IA (mwp IA, between c. 14,600–14,200 and 14,100–13,700 cal yr B.P.) occurred; an exceptionally large ice melting event, inferred from far-field sea-level records. The RSL curve shows a pronounced highstand of approximately 8 m between c. 7570–7270 and 7250–6950 cal yr B.P. that is consistent with the timing of the RSL highstand in the nearby Vestfold Hills. This is followed by a fall in RSL to the present. In contrast to previous findings, the isolation of the lakes in the Larsemann Hills postdates the isolation of lakes with similar sill heights in the Vestfold Hills. An increase in RSL fall during the late Holocene may record a decline in the rate of isostatic uplift in the Larsemann Hills between c. 7250–6950 and 2847–2509 cal yr B.P., that occurred in response to a documented mid-Holocene glacier readvance followed by a late-Holocene retreat.


1987 ◽  
Vol 24 (4) ◽  
pp. 591-601 ◽  
Author(s):  
Arthur S. Dyke

Seven new radiocarbon dates pertaining to deglaciation of northern Prince of Wales Island place the margin of the Laurentide Ice Sheet on the island by 11 000 BP. This requires a revision of the proposed age for the Viscount Melville Sound Ice Shelf of 10 300 – 9880 BP. A revised age of 11 300 – 11 000 BP is suggested.The new dates also require revisions of the proposed Wisconsinan and Holocene history of Banks Island. Shells thought to have been thrust onshore to an elevation of 88 m by the ice shelf on northern Banks Island after 10 600 BP are reinterpreted as undisturbed postglacial marine shells recording a relative sea level of 88 m or more. This, in turn, suggests that the East Coast Sea and Jesse Till are of Late Wisconsinan rather than Early Wisconsinan age and that the Late Wisconsinan glacial limit on Banks Island as figured on the 1968 Glacial Map of Canada, rather than on recent revisions, is essentially correct.


Sign in / Sign up

Export Citation Format

Share Document