Reflections on the OECD guidelines for in vitro skin absorption studies

2020 ◽  
Vol 117 ◽  
pp. 104752
Author(s):  
N.B. Hopf ◽  
C. Champmartin ◽  
L. Schenk ◽  
A. Berthet ◽  
L. Chedik ◽  
...  
Toxicology ◽  
1991 ◽  
Vol 66 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Barbara W. Kemppainen ◽  
William G. Reifenrath ◽  
Robert G. Stafford ◽  
Meena Mehta

2017 ◽  
Vol 33 (7) ◽  
pp. 547-554 ◽  
Author(s):  
Sharyn Gaskin ◽  
Linda Heath ◽  
Dino Pisaniello ◽  
John W Edwards ◽  
Michael Logan ◽  
...  

Accidental or intentional releases of toxic gases or vapors are the most common occurrence in hazardous material (HAZMAT) incidents that result in human injuries. The most serious hazard from exposure to gases or vapors is via the respiratory system. Dermal uptake, as a secondary route, is still a concern, most acutely for the unprotected public. There is a limited evidence base describing skin absorption of toxic gases and vapors in HAZMAT exposure scenarios, which are relatively brief compared with traditional test periods for skin absorption studies. We describe research designed to provide experimental data to support decision-making by first responders regarding skin decontamination in HAZMAT-focused exposure scenarios involving toxic gases. We present findings for three common fumigants, methyl bromide, sulfuryl fluoride, and chloropicrin assessed using an Organization for Economic Co-operation and Development in vitro toxicology protocol utilizing human skin and gas/vapor exposures. Results indicate that for atmospheric concentrations that would be lethal via inhalation (LCLo), intact skin provides an excellent barrier to exposures up to 30 min, with little influence of common clothing fabric and high temperature and humidity conditions. The findings may challenge the current HAZMAT dogma requiring mass personal decontamination by strip and shower for short-term exposures to sulfuryl fluoride and chloropicrin gas/vapor.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7154
Author(s):  
Laura Schioppa ◽  
Fanta Fall ◽  
Sergio Ortiz ◽  
Jacques H. Poupaert ◽  
Joelle Quetin-Leclercq

Pentacyclic triterpenes (PTs) are commonly found in medicinal plants with well-known antiparasitic effects. Previous research on C-3 and C-27 triterpenic esters showed effective and selective in vitro antiparasitic activities and in vivo effectiveness by parenteral routes. The aim of this study was to determine triterpenic esters’ stability in different biological-like media and the main microsomal degradation products. An HPLC-PDA method was developed and validated to simultaneously analyze and quantify bioactive triterpenic esters in methanol (LOQ: 2.5 and 1.25–100 µg/mL) and plasma (LOQ: 5–125 µg/mL). Overall, both triterpenic esters showed a stable profile in aqueous and buffered solutions as well as in entire plasma, suggesting gaining access to the ester function is difficult for plasma enzymes. Conversely, after 1 h, 30% esters degradation in acidic media was observed with potential different hydrolysis mechanisms. C-3 (15 and 150 µM) and C-27 esters (150 µM) showed a relatively low hepatic microsomal metabolism (<23%) after 1 h, which was significantly higher in the lowest concentration of C-27 esters (15 µM) (>40% degradation). Metabolic HPLC-PDA-HRMS studies suggested hydrolysis, hydroxylation, dehydration, O-methylation, hydroxylation and/or the reduction of hydrolyzed derivatives, depending on the concentration and the position of the ester link. Further permeability and absorption studies are required to better define triterpenic esters pharmacokinetic and specific formulations designed to increase their oral bioavailability.


Sign in / Sign up

Export Citation Format

Share Document