Recovery of the right atrial effective refractory period after cardioversion of chronic atrial fibrillation

1999 ◽  
Vol 84 (10) ◽  
pp. 1261-1264 ◽  
Author(s):  
Yasutaka Tanabe ◽  
Masaomi Chinushi ◽  
Kohji Taneda ◽  
Satoshi Fujita ◽  
Hidehiro Kasai ◽  
...  
2017 ◽  
Vol 18 (3) ◽  
pp. 147032031772928 ◽  
Author(s):  
Wenfeng Shangguan ◽  
Wen Shi ◽  
Guangping Li ◽  
Yuanyuan Wang ◽  
Jian Li ◽  
...  

Introduction: The effect of Angiotensin-(1–7) (Ang-(1–7)) on atrial autonomic remodeling is still unknown. We hypothesized that Ang-(1–7) could inhibit sympathetic nerve remodeling in a canine model of chronic atrial tachycardia. Materials and methods: Eighteen dogs were randomly assigned to sham group, pacing group and Ang-(1–7) group. Rapid atrial pacing was maintained for 14 days in the pacing and Ang-(1–7) groups. Ang-(1–7) was administered intravenously in the Ang-(1–7) group. The atrial effective refractory period and atrial fibrillation inducibility level were measured at baseline and under sympathetic nerve stimulation after 14 days of measurement. The atrial sympathetic nerves labeled with tyrosine hydroxylase were detected using immunohistochemistry and Western blotting, and tyrosine hydroxylase and nerve growth factor mRNA levels were measured by reverse transcription polymerase chain reaction. Results: Pacing shortened the atrial effective refractory period and increased the atrial fibrillation inducibility level at baseline and under sympathetic nerve stimulation. Ang-(1–7) treatment attenuated the shortening of the atrial effective refractory period and the increase in the atrial fibrillation inducibility level. Immunohistochemistry and Western blotting showed sympathetic nerve hyperinnervation in the pacing group, while Ang-(1–7) attenuated sympathetic nerve proliferation. Ang-(1–7) alleviated the pacing-induced increases in tyrosine hydroxylase and nerve growth factor mRNA expression levels. Conclusion: Ang-(1–7) can attenuate pacing-induced atrial sympathetic hyperinnervation.


Author(s):  
Ryo Nishinarita ◽  
Shinichi Niwano ◽  
Hiroe Niwano ◽  
Hironori Nakamura ◽  
Daiki Saito ◽  
...  

Background Recent clinical trials have demonstrated the possible pleiotropic effects of SGLT2 (sodium–glucose cotransporter 2) inhibitors in clinical cardiovascular diseases. Atrial electrical and structural remodeling is important as an atrial fibrillation (AF) substrate. Methods and Results The present study assessed the effect of canagliflozin (CAN), an SGLT2 inhibitor, on atrial remodeling in a canine AF model. The study included 12 beagle dogs, with 10 receiving continuous rapid atrial pacing and 2 acting as the nonpacing group. The 10 dogs that received continuous rapid atrial pacing for 3 weeks were subdivided as follows: pacing control group (n=5) and pacing+CAN (3 mg/kg per day) group (n=5). The atrial effective refractory period, conduction velocity, and AF inducibility were evaluated weekly through atrial epicardial wires. After the protocol, atrial tissues were sampled for histological examination. The degree of reactive oxygen species expression was evaluated by dihydroethidium staining. The atrial effective refractory period reduction was smaller ( P =0.06) and the degree of conduction velocity decrease was smaller in the pacing+CAN group compared with the pacing control group ( P =0.009). The AF inducibility gradually increased in the pacing control group, but such an increase was suppressed in the pacing+CAN group ( P =0.011). The pacing control group exhibited interstitial fibrosis and enhanced oxidative stress, which were suppressed in the pacing+CAN group. Conclusions CAN and possibly other SGLT2 inhibitors might be useful for preventing AF and suppressing the promotion of atrial remodeling as an AF substrate.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ryuichi Kambayashi ◽  
Hiroko Izumi-Nakaseko ◽  
Ai Goto ◽  
Kazuya Tsurudome ◽  
Hironori Ohshiro ◽  
...  

Oseltamivir has been shown to prolong the atrial conduction time and effective refractory period, and to suppress the onset of burst pacing-induced atrial fibrillation in vitro. To better predict its potential clinical benefit as an anti-atrial fibrillatory drug, we performed translational studies by assessing in vivo anti-atrial fibrillatory effect along with in vivo and in vitro electropharmacological analyses. Oseltamivir in intravenous doses of 3 (n = 6) and 30 mg/kg (n = 7) was administered in conscious state to the persistent atrial fibrillation model dogs to confirm its anti-atrial fibrillatory action. The model was prepared by tachypacing to the atria of chronic atrioventricular block dogs for > 6 weeks. Next, oseltamivir in doses of 0.3, 3 and 30 mg/kg was intravenously administered to the halothane-anesthetized intact dogs to analyze its in vivo electrophysiological actions (n = 4). Finally, its in vitro effects of 10–1,000 μM on IK,ACh, IKur, IKr, INa and ICaL were analyzed by using cell lines stably expressing Kir3.1/3.4, KV1.5, hERG, NaV1.5 or CaV1.2, respectively (n = 3 for IK,ACh and IKr or n = 6 for IKr, INa and ICaL). Oseltamivir in doses of 3 and 30 mg/kg terminated the atrial fibrillation in 1 out of 6 and in 6 out of 7 atrial fibrillation model dogs, respectively without inducing any lethal ventricular arrhythmia. Its 3 and 30 mg/kg delayed inter-atrial conduction in a frequency-dependent manner, whereas they prolonged atrial effective refractory period in a reverse frequency-dependent manner in the intact dogs. The current assay indicated that IC50 values for IK,ACh and IKr were 160 and 231 μM, respectively, but 1,000 µM inhibited INa, ICaL and IKur by 22, 19 and 13%, respectively. The extent of INa blockade was enhanced at faster beating rate and more depolarized resting membrane potential. Oseltamivir effectively terminated the persistent atrial fibrillation, which may be largely due to the prolongation of the atrial effective refractory period and inter-atrial conduction time induced by IK,ACh and IKr inhibitions along with INa suppression. Thus, oseltamivir can exert a powerful anti-atrial fibrillatory action through its ideal multi-channel blocking property; and oseltamivir would become a promising seed compound for developing efficacious and safe anti-atrial fibrillatory drugs.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Smoczynska ◽  
H.D.M Beekman ◽  
R.W Chui ◽  
S Rajamani ◽  
M.A Vos

Abstract Background Atrial fibrillation (AF) is the most common cardiac arrhythmia treated in clinical practice. Structural remodeling is characterized by atrial enlargement and contributes to the therapeutic resistance in patients with long-standing AF. Purpose To study the atrial arrhythmogenic and echocardiographic consequences induced by volume overload in the complete chronic atrioventricular block (CAVB) dog. Methods Echocardiographic and electrophysiological data was obtained in 14 anaesthetized Mongrel dogs, in acute AV-block (AAVB), after 6 weeks of CAVB (CAVB6) and CAVB10. Left atrial (LA) volume was determined with 2D echocardiography by using the biplane method. An electrocardiogram and monophasic action potentials (MAP) at the right atrial (RA) free wall were recorded. Atrial effective refractory period (AERP) was determined by continuous programmed electrical stimulation (PES) of 20 beats with a cycle length of 400 ms and an extrastimulus with decremental design until refractoriness was reached. A continuous PES protocol of 20 beats with an extrastimulus 5 ms longer than the AERP was applied for 150 seconds to trigger AF. After 5 min without arrhythmias, autonomic neuromodulation was performed by intravenous infusion (IV) of acetylcholine (1,5μg/kg/min to 6,0μg/kg/min) for 20 min followed by prompt IV infusion of isoprenaline (3μg/min) until the atrial heart rate increased by 20 bpm. PES with an extrastimulus was repeated for 150 seconds to induce AF. Results LA volume increased from 13.7±3.2 ml at AAVB to 20.5±5.9 ml* at CAVB6, and 22.7±6.0 ml* at CAVB10 (Fig. 1A). AERP was similar at AAVB, CAVB6, and CAVB10 (115.8±11.9, 117.3±11.7, and 106.8±12.1 ms respectively). Repetitive AF paroxysms of >10 seconds were induced in 1/14 (7%) dogs at AAVB, 1/11 (9%) at CAVB6, and 5/10 (50%)* at CAVB10 (*p<0.05) upon PES (Fig. 1B). Combined neuromodulation and PES did not increase the AF inducibility rate, but prolonged the longest episode of AF in the inducible dogs from 55±49 seconds to 236±202 seconds* at CAVB10 (Fig. 1C). LA volume was higher in inducible dogs 25.0±4.9 ml compared to 18.4±4.2 ml in non-inducible dogs at CAVB10. Conclusion Sustained atrial dilation forms a substrate for repetitive paroxysms of AF. Neuro-modulation prolongs AF episode duration in susceptible dogs. This animal model can be used to study structural remodeling of the atria and possible therapeutic advances in the management of AF. Figure 1 Funding Acknowledgement Type of funding source: Private company. Main funding source(s): Amgen Research


2020 ◽  
Vol 46 (08) ◽  
pp. 895-907
Author(s):  
Nina D. Anfinogenova ◽  
Oksana Y. Vasiltseva ◽  
Alexander V. Vrublevsky ◽  
Irina N. Vorozhtsova ◽  
Sergey V. Popov ◽  
...  

AbstractPrompt diagnosis of pulmonary embolism (PE) remains challenging, which often results in a delayed or inappropriate treatment of this life-threatening condition. Mobile thrombus in the right cardiac chambers is a neglected cause of PE. It poses an immediate risk to life and is associated with an unfavorable outcome and high mortality. Thrombus residing in the right atrial appendage (RAA) is an underestimated cause of PE, especially in patients with atrial fibrillation. This article reviews achievements and challenges of detection and management of the right atrial thrombus with emphasis on RAA thrombus. The capabilities of transthoracic and transesophageal echocardiography and advantages of three-dimensional and two-dimensional echocardiography are reviewed. Strengths of cardiac magnetic resonance imaging (CMR), computed tomography, and cardiac ventriculography are summarized. We suggest that a targeted search for RAA thrombus is necessary in high-risk patients with PE and atrial fibrillation using transesophageal echocardiography and/or CMR when available independently on the duration of the disease. High-risk patients may also benefit from transthoracic echocardiography with right parasternal approach. The examination of high-risk patients should involve compression ultrasonography of lower extremity veins along with the above-mentioned technologies. Algorithms for RAA thrombus risk assessment and protocols aimed at identification of patients with RAA thrombosis, who will potentially benefit from treatment, are warranted. The development of treatment protocols specific for the diverse populations of patients with right cardiac thrombosis is important.


Sign in / Sign up

Export Citation Format

Share Document