The role of nitric oxide in mediating adenosine-induced increases in uterine blood flow in the oophorectomized nonpregnant sheep*1

2000 ◽  
Vol 183 (1) ◽  
pp. 46-51
Author(s):  
L CARPENTER ◽  
R BAKER ◽  
S GREENBERG ◽  
K CLARK
2000 ◽  
Vol 183 (1) ◽  
pp. 46-51
Author(s):  
Lavenia B. Carpenter ◽  
R.Scott Baker ◽  
Suzanne Greenberg ◽  
Kenneth E. Clark

2020 ◽  
Vol 21 (12) ◽  
pp. 4349 ◽  
Author(s):  
Jin Bai ◽  
Qian-Rong Qi ◽  
Yan Li ◽  
Robert Day ◽  
Josh Makhoul ◽  
...  

Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.


Hypertension ◽  
1995 ◽  
Vol 25 (3) ◽  
pp. 408-414 ◽  
Author(s):  
Francisco J. Fenoy ◽  
Paloma Ferrer ◽  
Luis Carbonell ◽  
Miguel García-Salom

2012 ◽  
Vol 13 (Suppl 1) ◽  
pp. A28
Author(s):  
Doreen Schmidl ◽  
Agnes Boltz ◽  
Semira Kaya ◽  
René Werkmeister ◽  
Reinhard Told ◽  
...  

2005 ◽  
Vol 289 (6) ◽  
pp. F1324-F1332 ◽  
Author(s):  
Manish M. Tiwari ◽  
Robert W. Brock ◽  
Judit K. Megyesi ◽  
Gur P. Kaushal ◽  
Philip R. Mayeux

Acute renal failure (ARF) is a frequent and serious complication of endotoxemia caused by lipopolysaccharide (LPS) and contributes significantly to mortality. The present studies were undertaken to examine the roles of nitric oxide (NO) and caspase activation on renal peritubular blood flow and apoptosis in a murine model of LPS-induced ARF. Male C57BL/6 mice treated with LPS ( Escherichia coli) at a dose of 10 mg/kg developed ARF at 18 h. Renal failure was associated with a significant decrease in peritubular capillary perfusion. Vessels with no flow increased from 7 ± 3% in the saline group to 30 ± 4% in the LPS group ( P < 0.01). Both the inducible NO synthase inhibitor l- N6-1-iminoethyl-lysine (l-NIL) and the nonselective caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (Z-VAD) prevented renal failure and reversed perfusion deficits. Renal failure was also associated with an increase in renal caspase-3 activity and an increase in renal apoptosis. Both l-NIL and Z-VAD prevented these changes. LPS caused an increase in NO production that was blocked by l-NIL but not by Z-VAD. Taken together, these data suggest NO-mediated activation of renal caspases and the resulting disruption in peritubular blood flow are an important mechanism of LPS-induced ARF.


1998 ◽  
Vol 74 (2-3) ◽  
pp. 185-192 ◽  
Author(s):  
Enikö A. Kramár ◽  
Radhika Krishnan ◽  
Joseph W. Harding ◽  
John W. Wright

1995 ◽  
Vol 15 (5) ◽  
pp. 774-778 ◽  
Author(s):  
Qiong Wang ◽  
Dale A. Pelligrino ◽  
Verna L. Baughman ◽  
Heidi M. Koenig ◽  
Ronald F. Albrecht

The nitric oxide synthase (NOS) inhibitors, nitro-L-arginine, its methyl ester, and N-monomethyl-L-arginine, have been shown to attenuate resting CBF and hypercapnia-induced cerebrovasodilation. Those agents nonspecifically inhibit the endothelial and neuronal NOS (eNOS and nNOS). In the present study, we used a novel nNOS inhibitor, 7-nitroindazole (7-NI) to examine the role of nNOS in CBF during normocapnia and hypercapnia in fentanyl/N2O-anesthetized rats. CBF was monitored using laser-Doppler flowmetry. Administration of 7-NI (80 mg kg−1 i.p.) reduced cortical brain NOS activity by 57%, the resting CBF by 19–27%, and the CBF response to hypercapnia by 60%. The 60% reduction was similar in magnitude to the CBF reductions observed in previous studies in which nonspecific NOS inhibitors were used. In the present study, 7-NI did not increase the MABP. Furthermore, the CBF response to oxotremorine, a blood–brain barrier permeant muscarinic agonist that induces cerebrovasodilation via endothelium-derived NO, was unaffected by 7-NI. These results confirmed that 7-NI does not influence eNOS; they also indicated that the effects of 7-NI on the resting CBF and on the CBF response to hypercapnia in this study were solely related to its inhibitory action on nNOS. The results further suggest that the NO synthesized by the action of nNOS participates in regulation of basal CBF and is the major, if not the only, category of NO contributing to the hypercapnic CBF response.


2000 ◽  
Vol 278 (2) ◽  
pp. H353-H359 ◽  
Author(s):  
Donna S. Lambers ◽  
Suzanne G. Greenberg ◽  
Kenneth E. Clark

The objective was to determine the receptor subtype of angiotensin II (ANG II) that is responsible for vasoconstriction in the nonpregnant ovine uterine and systemic vasculatures. Seven nonpregnant estrogenized ewes with indwelling uterine artery catheters and flow probes received bolus injections (0.1, 0.3 and 1 μg) of ANG II locally into the uterine artery followed by a systemic infusion of ANG II at 100 ng ⋅ kg−1 ⋅ min−1for 10 min to determine uterine vasoconstrictor responses. Uterine ANG II dose-response curves were repeated following administration of the ANG II type 2 receptor (AT2) antagonist PD-123319 and then repeated again in the presence of an ANG II type 1 receptor (AT1) antagonist L-158809. In a second experiment, designed to investigate the mechanism of ANG II potentiation that occurred in the presence of AT2 blockade, nonestrogenized sheep received a uterine artery infusion of L-158809 (3 mg/min for 5 min) prior to the infusion of 0.03 μg/min of ANG II for 10 min. ANG II produced dose-dependent decreases in uterine blood flow ( P < 0.03), which were potentiated in the presence of the AT2 antagonist ( P < 0.02). Addition of the AT1 antagonist abolished the uterine vascular responses and blocked ANG II-induced increases in systemic arterial pressure ( P < 0.01). Significant uterine vasodilation ( P < 0.01) was noted with AT1 blockade in the second experiment, which was reversed by administration of the AT2 antagonist or by the nitric oxide synthetase inhibitor N ω-nitro-l-arginine methyl ester. We conclude that the AT1- receptors mediate the systemic and uterine vasoconstrictor responses to ANG II in the nonpregnant ewe. AT2-receptor blockade resulted in a potentiation of the uterine vasoconstrictor response to ANG II, suggesting that the AT2-receptor subtype may modulate uterine vascular responses to ANG II potentially by release of nitric oxide.


Sign in / Sign up

Export Citation Format

Share Document