scholarly journals Cytochrome c-Dependent Activation of Caspase-3 by Tumor Necrosis Factor Requires Induction of the Mitochondrial Permeability Transition

2000 ◽  
Vol 156 (6) ◽  
pp. 2111-2121 ◽  
Author(s):  
Marco Tafani ◽  
Timothy G. Schneider ◽  
John G. Pastorino ◽  
John L. Farber
1998 ◽  
Vol 18 (11) ◽  
pp. 6353-6364 ◽  
Author(s):  
Cynthia A. Bradham ◽  
Ting Qian ◽  
Konrad Streetz ◽  
Christian Trautwein ◽  
David A. Brenner ◽  
...  

ABSTRACT This study assesses the controversial role of the mitochondrial permeability transition (MPT) in apoptosis. In primary rat hepatocytes expressing an IκB superrepressor, tumor necrosis factor alpha (TNFα) induced apoptosis as shown by nuclear morphology, DNA ladder formation, and caspase 3 activation. Confocal microscopy showed that TNFα induced onset of the MPT and mitochondrial depolarization beginning 9 h after TNFα treatment. Initially, depolarization and the MPT occurred in only a subset of mitochondria; however, by 12 h after TNFα treatment, virtually all mitochondria were affected. Cyclosporin A (CsA), an inhibitor of the MPT, blocked TNFα-mediated apoptosis and cytochrome c release. Caspase 3 activation, cytochrome c release, and apoptotic nuclear morphological changes were induced after onset of the MPT and were prevented by CsA. Depolarization and onset of the MPT were blocked in hepatocytes expressing ΔFADD, a dominant negative mutant of Fas-associated protein with death domain (FADD), or crmA, a natural serpin inhibitor of caspases. In contrast, Asp-Glu-Val-Asp-cho, an inhibitor of caspase 3, did not block depolarization or onset of the MPT induced by TNFα, although it inhibited cell death completely. In conclusion, the MPT is an essential component in the signaling pathway for TNFα-induced apoptosis in hepatocytes which is required for both cytochrome c release and cell death and functions downstream of FADD and crmA but upstream of caspase 3.


1996 ◽  
Vol 271 (47) ◽  
pp. 29792-29798 ◽  
Author(s):  
John G. Pastorino ◽  
Gabriella Simbula ◽  
Kazuhiko Yamamoto ◽  
Peter A. Glascott ◽  
Ronald J. Rothman ◽  
...  

2006 ◽  
Vol 291 (5) ◽  
pp. H2265-H2271 ◽  
Author(s):  
J. C. Bopassa ◽  
David Vandroux ◽  
M. Ovize ◽  
R. Ferrera

We investigated whether low-pressure reperfusion may attenuate postischemic contractile dysfunction, limits necrosis and apoptosis after a prolonged hypothermic ischemia, and inhibits mitochondrial permeability transition-pore (MPTP) opening. Isolated rats hearts ( n = 72) were exposed to 8 h of cold ischemia and assigned to the following groups: 1) reperfusion with low pressure (LP = 70 cmH2O) and 2) reperfusion with normal pressure (NP = 100 cmH2O). Cardiac function was assessed during reperfusion using the Langendorff model. Mitochondria were isolated, and the Ca2+resistance capacity (CRC) of the MPTP was determined. Malondialdehyde (MDA) production, caspase-3 activity, and cytochrome c were also assessed. We found that functional recovery was significantly improved in LP hearts with rate-pressure product averaging 30,380 ± 1,757 vs. 18,000 ± 1,599 mmHg/min in NP hearts ( P < 0.01). Necrosis, measured by triphenyltetrazolium chloride staining and creatine kinase leakage, was significantly reduced in LP hearts ( P < 0.01). The CRC was increased in LP heart mitochondria ( P < 0.01). Caspase-3 activity, cytochrome c release, and MDA production were reduced in LP hearts ( P < 0.001 and P < 0.01). This study demonstrated that low-pressure reperfusion after hypothermic heart ischemia improves postischemic contractile dysfunction and attenuates necrosis and apoptosis. This protection could be related to an inhibition of mitochondrial permeability transition.


2000 ◽  
Vol 276 (15) ◽  
pp. 12035-12040 ◽  
Author(s):  
Luca Scorrano ◽  
Daniele Penzo ◽  
Valeria Petronilli ◽  
Francesco Pagano ◽  
Paolo Bernardi

We have investigated the effects of arachidonic and palmitic acids in isolated rat liver mitochondria and in rat hepatoma MH1C1 cells. We show that both compounds induce the mitochondrial permeability transition (PT). At variance from palmitic acid, however, arachidonic acid causes a PT at concentrations that do not cause PT-independent depolarization or respiratory inhibition, suggesting a specific effect on the PT pore. When added to intact MH1C1 cells, arachidonic acid but not palmitic acid caused a mitochondrial PTin situthat was accompanied by cytochromecrelease and rapidly followed by cell death. All these effects of arachidonic acid could be prevented by cyclosporin A but not by the phospholipase A2inhibitor aristolochic acid. In contrast, tumor necrosis factor α caused phospholipid hydrolysis, induction of the PT, cytochromecrelease, and cell death that could be inhibited by both cyclosporin A and aristolochic acid. These findings suggest that arachidonic acid produced by cytosolic phospholipase A2may be a mediator of tumor necrosis factor α cytotoxicityin situthrough induction of the mitochondrial PT.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Adeola Oluwakemi Olowofolahan ◽  
Obinna Matthew Paulinus ◽  
Heritage Mojisola Dare ◽  
Olufunso Olabode Olorunsogo

Abstract Background Some antitumor or anticancer agents have been shown to execute cell death by induction of mitochondrial permeability transition (mPT) pore opening in order to elicit their chemotherapeutic effect. Therefore, this study investigated the effect of metformin on cell death via rat uterus mPT pore and estradiol benzoate-induced uterine defect and associated pathophysiological disorder in female rat. Mitochondria were isolated using differential centrifugation. The mPT pore opening, cytochrome c release and mitochondrial ATPase activity were determined spectrophotometrically. Caspases 9 and 3 activities, MDA and estradiol levels and SOD, GSH activities, were determined using ELISA technique. Histological and histochemical assessments of the uterine section were carried out using standard methods. Results Metformin at concentrations 10–90 μg/mL, showed no significant effect on mPT pore opening, mATPase activity and release of cytochrome c. However, oral administration of metformin caused mPT pore opening, enhancement of mATPase activity and activation of caspases 9 and 3 significantly at 300 and 400 mg/kg. Metformin protected against estradiol benzoate (EB)-induced uterine defect and other associated pathophysiological disorder. It also improved the antioxidant defense system. The histological evaluation revealed the protective effect of metformin on the cellular architecture of the uterus while the histochemical examination showed severe hyperplasia in the uterine section of EB-treated rats, remarkably reversed by metformin co-treatment. Conclusion This study suggests that metformin at high doses induces apoptosis via rat uterus mPT pore opening and protects against EB-induced uterine defect (hyperplasia) and associated pathophysiological disorder.


2004 ◽  
Vol 382 (3) ◽  
pp. 877-884 ◽  
Author(s):  
Bruno GUIGAS ◽  
Dominique DETAILLE ◽  
Christiane CHAUVIN ◽  
Cécile BATANDIER ◽  
Frédéric De OLIVEIRA ◽  
...  

Metformin, a drug widely used in the treatment of Type II diabetes, has recently received attention owing to new findings regarding its mitochondrial and cellular effects. In the present study, the effects of metformin on respiration, complex 1 activity, mitochondrial permeability transition, cytochrome c release and cell death were investigated in cultured cells from a human carcinoma-derived cell line (KB cells). Metformin significantly decreased respiration both in intact cells and after permeabilization. This was due to a mild and specific inhibition of the respiratory chain complex 1. In addition, metformin prevented to a significant extent mitochondrial permeability transition both in permeabilized cells, as induced by calcium, and in intact cells, as induced by the glutathione-oxidizing agent t-butyl hydroperoxide. This effect was equivalent to that of cyclosporin A, the reference inhibitor. Finally, metformin impaired the t-butyl hydroperoxide-induced cell death, as judged by Trypan Blue exclusion, propidium iodide staining and cytochrome c release. We propose that metformin prevents the permeability transition-related commitment to cell death in relation to its mild inhibitory effect on complex 1, which is responsible for a decreased probability of mitochondrial permeability transition.


Sign in / Sign up

Export Citation Format

Share Document