The stability constants of the alkaline earth lactate and α-hydroxyisobutyrate complexes

1965 ◽  
Vol 33 ◽  
pp. 378-383 ◽  
Author(s):  
F. Verbeek ◽  
H. Thun
2021 ◽  
Vol 2021 (1) ◽  
pp. 44-51
Author(s):  
Adilya Jeyhun Ragimova ◽  
Vusala Ismayil Mardanova ◽  
Abel Maharram Maharramov ◽  
Khalil Jamal Nagiyev ◽  
Famil Musa Chyragov

The article considers the interaction of Ti(IV) with 2, 3, 4-trihydroxy-3'-fluoroazobenzene (H3R) in the presence and absence of phenontroline (Phen), α, α'-dipyridine (α, α'-dip), and batophenontroline (B-phen) studied by using a spectrophotometric method. It has been found that the yield of the binary complex is maximum at pHopt = 5 (λmax = 428 nm), and for mixed-ligand complexes, pHopt = 3.0; 4.0; 3.5; λmax = 477 nm, 443 nm, 440 nm Ti(OH)2(H2R)-Phen, Ti (OH)2(H2R)-α, α'-dip and Ti(OH)2(H2R)-B-phen, respectively. It has been investigated that a twofold excess of the reagent is required for complete binding of titanium(IV) into the complex. The influence of time and temperature on the complexation is investigated. The stability constants of binary and mixed-ligand titanium(IV) complexes were calculated: logβ = 8.61 ± 0.05 for Ti(OH)2(H2R)2, logβ = 10.98 ± 0.06 for Ti(OH)2(H2R)-Phen, logβ = 10.85 ± 0.04 for Ti (OH)2(H2R)-α, α'-dip, logβ = 11.26 ± 0.03 for Ti(OH)2(H2R)-B-phen. The ratio of the reacting components in the binary complex is 1 : 2, and in the mixed ligands 1 : 2 : 2. The influence of foreign ions and masking substances on the titanium(IV) complexation with reagents has been studied. The determination is practically not interfered by alkaline, alkaline-earth and some transition elements. Due to these characteristics, the complexes can be used for defining titanium(IV) in different objects.


2019 ◽  
Author(s):  
Nga Phung ◽  
Hans Köbler ◽  
Diego Di Girolamo ◽  
Thi Tuyen Ngo ◽  
Gabrielle Sousa e Silva ◽  
...  

1985 ◽  
Vol 50 (3) ◽  
pp. 581-599 ◽  
Author(s):  
Petr Vaňura ◽  
Emanuel Makrlík

Extraction of microamounts of Sr2+ and Ba2+ (henceforth M2+) from the aqueous solutions of perchloric acid (0.0125-1.02 mol/l) by means of the nitrobenzene solutions of dicarbolide (0.004-0.05 mol/l of H+{Co(C2B9H11)2}-) was studied in the presence of monoglyme (only Ba2+), diglyme, triglyme, and tetraglyme (CH3O-(CH2-CH2O)nCH3, where n = 1, 2, 3, 4). The distribution of glyme betweeen the aqueous and organic phases, the extraction of the protonized glyme molecule HL+ together with the extraction of M2+ ion and of the glyme complex with the M2+ ion, i.e., ML2+ (where L is the molecule of glyme), were found to be the dominating reactions in the systems under study. In the systems with tri- and tetraglymes the extraction of H+ and M2+ ions solvated with two glyme molecules, i.e., the formation of HL2+ and ML22+ species, can probably play a minor role. The values of the respective equilibrium constants, of the stability constants of complexes formed in the organic phase, and the theoretical separation factors αBa/Sr were determined. The effect of the ligand structure on the values of extraction and stability constants in the organic phase is discussed.


2012 ◽  
Vol 239-240 ◽  
pp. 1573-1576
Author(s):  
Zhu Qing Gao ◽  
Xiao Dong Cai ◽  
Kai Cheng Ling

At different temperatures, the protonation constants of tannic acid and the complex apparent stability constants between tannic acid and VO2+ were determined by using pH potentimetric method. The results showed that the protonation constants and the complex apparent stability constants slightly decreased with the raising temperature. In accordance with the pH value in the tannin extract technology, the conditional stability constants of the complex were calculated on the basis of the acid effect of tannic acid and the hydrolysis effect of VO2+. It was found that pH greatly affected the stability constants of the complex , so pH must be strictly controlled in the tannin extract technology.


1992 ◽  
Vol 38 (4) ◽  
pp. 562-565 ◽  
Author(s):  
M A Kline ◽  
C Orvig

Abstract The stability constants for the Fe(III) complexes of the orally active iron decorporation drug L1 (3-hydroxy-1,2-dimethyl-4-pyridinone) have been determined by potentiometric titration [glass electrode, 25.0 degrees C, mu = 0.15 mol/L (isotonic) NaCl]. A simple computer model of blood plasma (citrate 100 mumol/L, transferrin 37 mumol/L) has been used to compare the Fe(III) binding efficacies in blood of L1 and the clinically used intravenously administered chelating agent deferoxamine.


Sign in / Sign up

Export Citation Format

Share Document