Type II collagen and aggrecan mRNA expression by in situ hybridization in rabbit temporomandibular joint posterior attachment following disc displacement

2003 ◽  
Vol 48 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Zhiyuan Gu ◽  
Jianying Feng ◽  
Takanori Shibata ◽  
Ji’an Hu ◽  
Zhenkang Zhang
Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 111-118 ◽  
Author(s):  
C.J. Devlin ◽  
P.M. Brickell ◽  
E.R. Taylor ◽  
A. Hornbruch ◽  
R.K. Craig ◽  
...  

During limb development, type I collagen disappears from the region where cartilage develops and synthesis of type II collagen, which is characteristic of cartilage, begins. In situ hybridization using antisense RNA probes was used to investigate the spatial localization of type I and type II collagen mRNAs. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen synthesis, suggesting control at the level of transcription and mRNA accumulation. In contrast, the pattern of mRNA for type I collagen remained more or less uniform and did not correspond with the synthesis of the protein, suggesting control primarily at the level of translation or of RNA processing.


1988 ◽  
Vol 8 (4) ◽  
pp. 277-294 ◽  
Author(s):  
Hyun-Duck Nah ◽  
Barbara J. Rodgers ◽  
William M. Kulyk ◽  
Barbara E. Kream ◽  
Robert A. Kosher ◽  
...  

1990 ◽  
Vol 86 (1) ◽  
Author(s):  
Ei-ichi Takahashi ◽  
Tada-aki Hori ◽  
Peter O'Connell ◽  
Mark Leppert ◽  
Ray White

1986 ◽  
Vol 102 (6) ◽  
pp. 2302-2309 ◽  
Author(s):  
M Hayashi ◽  
Y Ninomiya ◽  
J Parsons ◽  
K Hayashi ◽  
B R Olsen ◽  
...  

We have employed a highly specific in situ hybridization protocol that allows differential detection of mRNAs of collagen types I and II in paraffin sections from chick embryo tissues. All probes were cDNA restriction fragments encoding portions of the C-propeptide region of the pro alpha-chain, and some of the fragments also encoded the 3'-untranslated region of mRNAs of either type I or type II collagen. Smears of tendon fibroblasts and those of sternal chondrocytes from 17-d-old chick embryos as well as paraffin sections of 10-d-old whole embryos and of the cornea of 6.5-d-old embryos were hybridized with 3H-labeled probes for either type I or type II collagen mRNA. Autoradiographs revealed that the labeling was prominent in tendon fibroblasts with the type I collagen probe and in sternal chondrocytes with the type II collagen probe; that in the cartilage of sclera and limbs from 10-d-old embryos, the type I probe showed strong labeling of fibroblast sheets surrounding the cartilage and of a few chondrocytes in the cartilage, whereas the type II probe labeled chondrocytes intensely and only a few fibroblasts; and that in the cornea of 6.5-d-old embryos, the type I probe labeled the epithelial cells and fibroblasts in the stroma heavily, and the endothelial cells slightly, whereas the type II probe labeled almost exclusively the epithelial cells except for a slight labeling in the endothelial cells. These data indicate that embryonic tissues express these two collagen genes separately and/or simultaneously and offer new approaches to the study of the cellular regulation of extracellular matrix components.


1988 ◽  
Vol 125 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Billie J. Swalla ◽  
William B. Upholt ◽  
Michael Solursh

1987 ◽  
Vol 104 (4) ◽  
pp. 1077-1084 ◽  
Author(s):  
M Sandberg ◽  
E Vuorio

Paraffin sections of human skeletal tissues were studied in order to identify cells responsible for production of types I, II, and III collagens by in situ hybridization. Northern hybridization and sequence information were used to select restriction fragments of cDNA clones for the corresponding mRNAs to obtain probes with a minimum of cross-hybridization. The specificity of the probes was proven in hybridizations to sections of developing fingers: osteoblasts and chondrocytes, known to produce only one type of fibrillar collagen each (I and II, respectively) were only recognized by the corresponding cDNA probes. Smooth connective tissues exhibited variable hybridization intensities with types I and III collagen cDNA probes. The technique was used to localize the activity of type II collagen production in the different zones of cartilage during the growth of long bones. Visual inspection and grain counting revealed the highest levels of pro alpha 1(II) collagen mRNAs in chondrocytes of the lower proliferative and upper hypertrophic zones of the growth plate cartilage. This finding was confirmed by Northern blotting of RNAs isolated from epiphyseal (resting) cartilage and from growth zone cartilage. Analysis of the osseochondral junction revealed virtually no overlap between hybridization patterns obtained with probes specific for type I and type II collagen mRNAs. Only a fraction of the chondrocytes in the degenerative zone were recognized by the pro alpha 1(II) collagen cDNA probe, and none by the type I collagen cDNA probe. In the mineralizing zone virtually all cells were recognized by the type I collagen cDNA probe, but only very few scattered cells appeared to contain type II collagen mRNA. These data indicate that in situ hybridization is a valuable tool for identification of connective tissue cells which are actively producing different types of collagens at the various stages of development, differentiation, and growth.


1992 ◽  
Vol 76 (2) ◽  
pp. 254-254
Author(s):  
Kak Assem ◽  
Le Guellec Dominique ◽  
Schoëvaërt Damien ◽  
Balmain Nicole

Sign in / Sign up

Export Citation Format

Share Document