scholarly journals Distribution of type II collagen mRNA in Xenopus embryos visualized by whole-mount in situ hybridization.

1992 ◽  
Vol 40 (8) ◽  
pp. 1117-1120 ◽  
Author(s):  
J J Bieker ◽  
M Yazdani-Buicky
Development ◽  
1990 ◽  
Vol 110 (2) ◽  
pp. 325-330 ◽  
Author(s):  
A. Hemmati-Brivanlou ◽  
D. Frank ◽  
M.E. Bolce ◽  
B.D. Brown ◽  
H.L. Sive ◽  
...  

We have adapted a non-radioactive technique to detect localized mRNAs in whole-mount Xenopus embryos. Synthetic antisense RNA transcribed in the presence of digoxygenin-UTP is used as a probe and is detected via an anti-digoxygenin antibody. We show that localized mRNAs can be detected from late gastrula to tadpole stages and that high as well as low abundance RNAs can be detected. The method was tested on muscle actin and alpha-globin RNAs, whose localization has previously been characterized. In addition, we used the method to determine the distribution of XA-1 RNA, an anterior ectoderm-specific RNA, which we show is expressed in the periphery of the cement gland as well as in the region of the hatching gland. The sequence of an XA-1 cDNA predicts a protein rich in proline and histidine.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 111-118 ◽  
Author(s):  
C.J. Devlin ◽  
P.M. Brickell ◽  
E.R. Taylor ◽  
A. Hornbruch ◽  
R.K. Craig ◽  
...  

During limb development, type I collagen disappears from the region where cartilage develops and synthesis of type II collagen, which is characteristic of cartilage, begins. In situ hybridization using antisense RNA probes was used to investigate the spatial localization of type I and type II collagen mRNAs. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen synthesis, suggesting control at the level of transcription and mRNA accumulation. In contrast, the pattern of mRNA for type I collagen remained more or less uniform and did not correspond with the synthesis of the protein, suggesting control primarily at the level of translation or of RNA processing.


1988 ◽  
Vol 8 (4) ◽  
pp. 277-294 ◽  
Author(s):  
Hyun-Duck Nah ◽  
Barbara J. Rodgers ◽  
William M. Kulyk ◽  
Barbara E. Kream ◽  
Robert A. Kosher ◽  
...  

1990 ◽  
Vol 86 (1) ◽  
Author(s):  
Ei-ichi Takahashi ◽  
Tada-aki Hori ◽  
Peter O'Connell ◽  
Mark Leppert ◽  
Ray White

Author(s):  
Edgar M. Pera ◽  
Helena Acosta ◽  
Nadège Gouignard ◽  
Maria Climent

1986 ◽  
Vol 102 (6) ◽  
pp. 2302-2309 ◽  
Author(s):  
M Hayashi ◽  
Y Ninomiya ◽  
J Parsons ◽  
K Hayashi ◽  
B R Olsen ◽  
...  

We have employed a highly specific in situ hybridization protocol that allows differential detection of mRNAs of collagen types I and II in paraffin sections from chick embryo tissues. All probes were cDNA restriction fragments encoding portions of the C-propeptide region of the pro alpha-chain, and some of the fragments also encoded the 3'-untranslated region of mRNAs of either type I or type II collagen. Smears of tendon fibroblasts and those of sternal chondrocytes from 17-d-old chick embryos as well as paraffin sections of 10-d-old whole embryos and of the cornea of 6.5-d-old embryos were hybridized with 3H-labeled probes for either type I or type II collagen mRNA. Autoradiographs revealed that the labeling was prominent in tendon fibroblasts with the type I collagen probe and in sternal chondrocytes with the type II collagen probe; that in the cartilage of sclera and limbs from 10-d-old embryos, the type I probe showed strong labeling of fibroblast sheets surrounding the cartilage and of a few chondrocytes in the cartilage, whereas the type II probe labeled chondrocytes intensely and only a few fibroblasts; and that in the cornea of 6.5-d-old embryos, the type I probe labeled the epithelial cells and fibroblasts in the stroma heavily, and the endothelial cells slightly, whereas the type II probe labeled almost exclusively the epithelial cells except for a slight labeling in the endothelial cells. These data indicate that embryonic tissues express these two collagen genes separately and/or simultaneously and offer new approaches to the study of the cellular regulation of extracellular matrix components.


Sign in / Sign up

Export Citation Format

Share Document