Antioxidant inhibits tamoxifen–DNA adducts in endometrial explant culture

2003 ◽  
Vol 307 (1) ◽  
pp. 157-164 ◽  
Author(s):  
Minoti Sharma ◽  
David E Shubert ◽  
Moheswar Sharma ◽  
Kerry J Rodabaugh ◽  
Barbara P McGarrigle ◽  
...  
Keyword(s):  
2016 ◽  
Vol 76 (10) ◽  
Author(s):  
M Suarez-Carmona ◽  
A Heinzelmann ◽  
M Hampel ◽  
S Schott ◽  
I Zörnig ◽  
...  

2008 ◽  
Vol 46 (01) ◽  
Author(s):  
Y Wang ◽  
J Nair ◽  
S Mueller ◽  
F Stickel ◽  
H Bartsch ◽  
...  

Author(s):  
Anchal Trivedi ◽  
Aparna Misra ◽  
Esha Sarkar ◽  
Anil K. Balapure

Background: In recent years, great progress has been made in reducing the high level of malaria suffering worldwide. There is a great need to evaluate drug resistance reversers and consider new medicines against malaria. There are many approaches to the development of antimalarial drugs. Specific concerns must be taken in to account in these approaches, in particular there requirement for very in expensive and simple use of new therapies and the need to limit drug discovery expenses. Important ongoing efforts are the optimisation of treatment with available medications, including the use of combination therapy. The production of analogs of known agents and the identification of natural products, the use of compounds originally developed against other diseases, the assessment of overcoming drug resistance and the consideration of new therapeutic targets. Liver and spleen are the important organs which are directly associated with malarial complications. Aim: An analysis the Activity of Adenosine Triphosphatase, Aryl Hyrocarbon Hydroxylase Enzymes and Malondialdehyde in spleen Explant Culture. Objective: To determine in-Vitro Effect of Chlorquine and Picroliv on Plasmodium Berghei Induced Alterations in the Activity of Adenosine Triphosphatase, Aryl Hyrocarbon Hydroxylase Enzymes and Malondialdehyde in spleen Explant Culture. Material and method: 1-Histological preparation of spleen explants for paraplast embedding 2-Biochemicalstudies (Enzymes (Atpase, ALP&GST) and the level of protein, Malondialdehyde (MDA). Result: Splenomegalyis one of the three main diagnostic parameters of malaria infection besides fever and anaemia. Many enzymes present in the liver and spleen may also be altered or liberated under different pathological conditions. Enzymes (ATPase, ALP&GST) and the level of protein, Malondialdehyde (MDA) content was found to increase in the liver and spleen explants during malarial infection. In the liver and spleen derived from parasitized CQ treated animals, the activity of all the above enzymes (ATPase, ALP&GST) and the level of protein & MDA of liver/spleen reversed towards the normal for all the 4or3 days of incubations. Picroliv efficacy decreased with the increment of parasitaemia and at 60%parasitaemia. Conclusion: Alkalinephosphatase (ALP) was found to increase with increasing parasitaemia. After the addition of Picroliv to the medium, a decrement in the activity was observed up to day 4 of culture.A similar positive effect of Picroliv was observed on the ATPase and ALP activity of spleen explants.DNA and protein contents also increased in the parasitized liver cultured in the presence of picroliv.On the contrary, in the spleen explants DNA, protein and MDA content were found to decrease after Picroliv supplementation to the culture medium.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 366
Author(s):  
Valeria Guidolin ◽  
Erik S. Carlson ◽  
Andrea Carrà ◽  
Peter W. Villalta ◽  
Laura A. Maertens ◽  
...  

Alcohol consumption is a risk factor for the development of several cancers, including those of the head and neck and the esophagus. The underlying mechanisms of alcohol-induced carcinogenesis remain unclear; however, at these sites, alcohol-derived acetaldehyde seems to play a major role. By reacting with DNA, acetaldehyde generates covalent modifications (adducts) that can lead to mutations. Previous studies have shown a dose dependence between levels of a major acetaldehyde-derived DNA adduct and alcohol exposure in oral-cell DNA. The goal of this study was to optimize a mass spectrometry (MS)-based DNA adductomic approach to screen for all acetaldehyde-derived DNA adducts to more comprehensively characterize the genotoxic effects of acetaldehyde in humans. A high-resolution/-accurate-mass data-dependent constant-neutral-loss-MS3 methodology was developed to profile acetaldehyde-DNA adducts in purified DNA. This resulted in the identification of 22 DNA adducts. In addition to the expected N2-ethyldeoxyguanosine (after NaBH3CN reduction), two previously unreported adducts showed prominent signals in the mass spectra. MSn fragmentation spectra and accurate mass were used to hypothesize the structure of the two new adducts, which were then identified as N6-ethyldeoxyadenosine and N4-ethyldeoxycytidine by comparison with synthesized standards. These adducts were quantified in DNA isolated from oral cells collected from volunteers exposed to alcohol, revealing a significant increase after the exposure. In addition, 17 of the adducts identified in vitro were detected in these samples confirming our ability to more comprehensively characterize the DNA damage deriving from alcohol exposures.


Sign in / Sign up

Export Citation Format

Share Document