Inhibition of neuronal nitric oxide synthase activity by 3-[2-[4-(3-chloro-2-methylphenyl)- 1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), a novel neuroprotective agent, in vitro and in cultured neuroblastoma cells in situ

2000 ◽  
Vol 60 (5) ◽  
pp. 693-699 ◽  
Author(s):  
Kohji Fukunaga ◽  
Masao Ohmitsu ◽  
Eishichi Miyamoto ◽  
Toshiyuki Sato ◽  
Masunobu Sugimura ◽  
...  
1996 ◽  
Vol 271 (28) ◽  
pp. 16856-16861 ◽  
Author(s):  
Haim Ovadia ◽  
Hana Rosenmann ◽  
Elias Shezen ◽  
Michele Halimi ◽  
Ishai Ofran ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Neeru M Sharma ◽  
Kenichi Katsurada ◽  
Xuefei Liu ◽  
Kaushik P Patel

The exaggerated sympathetic drive is a characteristic of heart failure (HF) due to reduced neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN). Previously we have shown that there were increased accumulation of nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of rats with HF (1.0±0.05 Sham vs. 1.29±0.06 HF) due to the increased levels of PIN (a protein inhibitor of nNOS, known to dissociate nNOS dimers into monomers) (0.76±0.10 Sham vs. 1.12±0.09 HF) and decreased levels of tetrahydrobiopterin (BH4): a cofactor required for stabilization of nNOS dimers (0.62±0.02 Sham vs. 0.44±0.03 HF). We also showed that there is blunted nitric oxide-mediated inhibition of sympathetic tone via the PVN in HF. Here we examined whether CHIP(C-terminus of Hsp70 -interacting protein), a chaperone-dependent E3 ubiquitin-protein isopeptide ligase known to ubiquitylate Hsp90-chaperoned proteins could act as an ubiquitin ligase for nNOS in the PVN. Immunofluorescence studies revealed colocalization of nNOS and CHIP in the PVN indicating their possible interaction. CHIP expression was increased by 50% in the PVN of rats with HF(0.96±0.08 Sham vs.1.44±0.10* HF). It is shown that Hsp90 protects nNOS from ubiquitination while Hsp70 promotes the ubiquitination and degradation. We observed significant upregulation of Hsp70 (0.49±0.03 Sham vs. 0.65±0.02* HF) with a trend toward the decrease in Hsp90 expression (0.90±0.07 Sham vs. 0.71±0.06 HF). The opposing effects of the two chaperones could account for the increased CHIP-mediated ubiquitination and degradation of dysfunctional nNOS monomers in the PVN of rats with HF. Furthermore, neuronal NG108-15 cell line transfected with the pCMV3-CHIP-GFP spark (CHIP overexpression plasmid) showed approximately 74% increase in CHIP with concomitant 49% decrease in nNOS expression. In vitro ubiquitination assay in NG108 cells transfected with pCMV-(HA-Ub) 8 and pCMV3-CHIP-GFP spark plasmid reveal increased HA-Ub-nNOS conjugates (1.13 ± 0.09 Scramble vs. 1.65 ± 0.12* CHIP plasmid). Taken together, our results identify CHIP as an E3 ligase for ubiquitination of dysfunctional nNOS and CHIP expression is augmented during HF leading to increased proteasomal degradation of nNOS in the PVN.


1998 ◽  
Vol 274 (3) ◽  
pp. F516-F524 ◽  
Author(s):  
Atsuhiro Ichihara ◽  
Edward W. Inscho ◽  
John D. Imig ◽  
L. Gabriel Navar

This study was performed to determine the influence of neuronal nitric oxide synthase (nNOS) on renal arteriolar tone under conditions of normal, interrupted, and increased volume delivery to the macula densa segment and on the microvascular responses to angiotensin II (ANG II). Experiments were performed in vitro on afferent (21.2 ± 0.2 μm) and efferent (18.5 ± 0.2 μm) arterioles of kidneys harvested from male Sprague-Dawley rats, using the blood-perfused juxtamedullary nephron technique. Superfusion with the specific nNOS inhibitor, S-methyl-l-thiocitrulline (l-SMTC), decreased afferent and efferent arteriolar diameters, and these decreases in arteriolar diameters were prevented by interruption of distal volume delivery by papillectomy. When 10 mM acetazolamide was added to the blood perfusate to increase volume delivery to the macula densa segment, afferent arteriolar vasoconstrictor responses tol-SMTC were enhanced, but this effect was again completely prevented after papillectomy. In contrast, the arteriolar diameter responses to the nonselective NOS inhibitor, N ω-nitro-l-arginine (l-NNA) were only attenuated by papillectomy.l-SMTC (10 μM) enhanced the efferent arteriolar vasoconstrictor response to ANG II but did not alter the afferent arteriolar vasoconstrictor responsiveness to ANG II. In contrast, l-NNA (100 μM) enhanced both afferent and efferent arteriolar vasoconstrictor responses to ANG II. These results indicate that the modulating influence of nNOS on afferent arteriolar tone of juxtamedullary nephrons is dependent on distal tubular fluid flow. Furthermore, nNOS exerts a differential modulatory action on the juxtamedullary microvasculature by enhancing efferent, but not afferent, arteriolar responsiveness to ANG II.


Sign in / Sign up

Export Citation Format

Share Document