Role of fluidity of membranes on the guanyl nucleotide-dependent binding of cholecystokinin-8S to rat brain cortical membranes

1998 ◽  
Vol 55 (4) ◽  
pp. 423-431 ◽  
Author(s):  
Ago Rinken ◽  
Jaanus Harro ◽  
Lorentz Engström ◽  
Lars Oreland
1990 ◽  
Vol 258 (6) ◽  
pp. F1640-F1649
Author(s):  
E. Bellorin-Font ◽  
R. Starosta ◽  
C. L. Milanes ◽  
C. Lopez ◽  
N. Pernalete ◽  
...  

These studies examine the regulation of adenylate cyclase in renal cortical membranes from phosphate-deprived and phosphate-deprived acidotic dogs. Enzyme stimulation by parathyroid hormone (PTH) was decreased in phosphate deprivation [Vmax 1,578 +/- 169 vs. 2,581 +/- 219 pmol adenosine 3',5'-cyclic monophosphate (cAMP).mg protein-1 x 30 min-1 in controls, P less than 0.01]. Metabolic acidosis further decreased PTH-stimulated activity. Membranes from phosphate-deprived dogs showed a decrease in Gs alpha-content by cholera toxin-dependent ADP-ribosylation (174 +/- 18 arbitrary units vs. 266.4 +/- 13.6 in controls, P less than 0.01). Metabolic acidosis further decreased Gs alpha-content, P less than 0.01. Gi content by pertussis-dependent ADP-ribosylation was also lower in phosphate-deprived and phosphate-deprived acidotic animals. Gs function was examined by its property to protect the catalytic unit from inactivation by N-ethylmaleimide when preincubated with GTP gamma S. In controls, protection of inactivation was 80% of the maximal activity, whereas in phosphate deprivation protection was less than 50%. In conclusion, metabolic acidosis enhances adenylate cyclase resistance to PTH in phosphate deprivation. These alterations are associated with a decrease in the content and function of Gs alpha, suggesting a role of Gs in the renal adaptation to phosphate depletion and acidosis.


2009 ◽  
Vol 27 (7) ◽  
pp. 643-648
Author(s):  
Ganesan Murali ◽  
Sugumar Dhivya ◽  
Periannan Rasappan
Keyword(s):  

1980 ◽  
Vol 190 (2) ◽  
pp. 333-339 ◽  
Author(s):  
M C W Minchin

1. Protoveratrine A increased the release of gamma-amino[3H]butyrate from small slices of rat cerebral cortex. This effect increased with increasing protoveratrine concentration, reaching a maximum at 100 microM. 2. Removal of Ca2+ from the superfusing medium did not change the increase in release due to 10 microM-protoveratrine; however, the Ca2+ antagonists, compound D-600, La3+, Mn2+, Mg2+ and also high Ca2+ concentration inhibited the effect of the alkaloid, as did procaine. 3. Protoveratrine A increased the uptake of 22Na+ into the slices with a similar dose-response curve to that found for gamma-aminobutyrate release. For the most part, the substances that inhibited protoveratrine-stimulated gamma-aminobutyrate release also inhibited 22Na+ uptake, although the correlation was not perfect. 4. Although extracellular Ca2+ is not required for protoveratrine-induced gamma-aminobutyrate release, an increase in Na+ influx that is susceptible to inhibition by some Ca2+ antagonists does appear to be associated with this phenomenon. However, the possibility remains that changes in the free intracellular Ca2+ concentration may be important for transmitter release induced by depolarizing veratrum alkaloids.


2012 ◽  
Vol 89 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Mahtab Jafari ◽  
Antoni Sureda ◽  
Seyed Mohammad Nabavi

Sign in / Sign up

Export Citation Format

Share Document