scholarly journals Chemical model of reaction cascades induced by activated enzymes or catalysts. Two-step cascades in visual transduction

1990 ◽  
Vol 57 (1) ◽  
pp. 163-167 ◽  
Author(s):  
K. Shirane ◽  
T. Tokimoto ◽  
Y. Yamaguchi
2021 ◽  
Author(s):  
Derik Wilbers ◽  
Joseph Brehm ◽  
Richard Lewis ◽  
Jacqueline Van Marwijk ◽  
Thomas Davies ◽  
...  

The combination of heterogeneous catalysis and biocatalysis into one-pot reaction cascades is a potential approach to integrate enzymatic transformations into existing chemical infrastructure. Peroxygenases, which can achieve clean C-H activation,...


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Tesshu Hori ◽  
Shohei Ikuta ◽  
Satoko Hattori ◽  
Keizo Takao ◽  
Tsuyoshi Miyakawa ◽  
...  

AbstractThe 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1−/− mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1−/− mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1−/− mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1−/− mice and mGluR6−/− mice, but hyperlocomotor activity has not been reported in mGluR6−/− mice. These data suggest that the phenotype of Trpm1−/− mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.


Author(s):  
Jishan Liu ◽  
Jinchang Sheng ◽  
A. Polak ◽  
D. Elsworth ◽  
H. Yasuhara ◽  
...  

2010 ◽  
Vol 24 (18) ◽  
pp. 1963-1970 ◽  
Author(s):  
ARVIDS STASHANS ◽  
RICHARD RIVERA

Structural and optical properties of F-center (two electrons trapped by an oxygen vacancy) defect in hematite have been studied using a quantum-chemical model. Calculated absorption energies, 0.9 eV and 3.6 eV, are discussed in terms of the available experimental data. An explanation for the origin of experimentally observed electron depletion in hematite is proposed.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Simon Bachler ◽  
Dominik Haidas ◽  
Marion Ort ◽  
Todd A. Duncombe ◽  
Petra S. Dittrich

AbstractIn the field of bottom-up synthetic biology, lipid membranes are the scaffold to create minimal cells and mimic reactions and processes at or across the membrane. In this context, we employ here a versatile microfluidic platform that enables precise positioning of nanoliter droplets with user-specified lipid compositions and in a defined pattern. Adjacent droplets make contact and form a droplet interface bilayer to simulate cellular membranes. Translocation of molecules across membranes are tailored by the addition of alpha-hemolysin to selected droplets. Moreover, we developed a protocol to analyze the translocation of non-fluorescent molecules between droplets with mass spectrometry. Our method is capable of automated formation of one- and two-dimensional droplet networks, which we demonstrated by connecting droplets containing different compound and enzyme solutions to perform translocation experiments and a multistep enzymatic cascade reaction across the droplet network. Our platform opens doors for creating complex artificial systems for bottom-up synthetic biology.


Sign in / Sign up

Export Citation Format

Share Document