Effect of nilvadipine on the voltage-dependent Ca2+ channels in rat hippocampal CA1 pyramidal neurons

1998 ◽  
Vol 813 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Hitoshi Ishibashi ◽  
Yoshinaka Murai ◽  
Norio Akaike
1996 ◽  
Vol 76 (5) ◽  
pp. 3460-3470 ◽  
Author(s):  
J. C. Magee ◽  
R. B. Avery ◽  
B. R. Christie ◽  
D. Johnston

1. Whole cell recordings and high-speed fluorescence imaging were used to investigate the contribution of voltage-gated Ca2+ channels to the resting Ca2+ concentration ([Ca2+]i) in hippocampal CA1 pyramidal neurons. 2. Prolonged membrane hyperpolarization produced, in a voltage-dependent manner, sustained decreases in [Ca2+]i in the somatic and apical dendritic regions of the neuron. This hyperpolarization-induced decrease in [Ca2+]i occurred with a time constant of approximately 1 s and was maintained for as long as the membrane potential was held at the new level. Ratiometric measures showed that [Ca2+]i is significantly elevated at holding potentials of -50 mV compared with -80 mV. 3. The hyperpolarization-induced decrease in [Ca2+]i was reduced significantly by 200 microM Cd2+ and 10 microM nimodipine, but was only slightly inhibited by 50 microM Ni2+. The largest amplitude decrease in [Ca2+]i was observed in the proximal apical dendrites with the amplitude of the Ca2+ change decreasing with further distance from the soma. 4. Whole cell recordings from acutely isolated hippocampal pyramidal neurons reveal a slowly inactivating Ca2+ current with similar voltage dependence and pharmacology to the hyperpolarization-induced decrease in [Ca2+]i. 5. The data suggest that a population of dihydropyridine-sensitive Ca2+ channels are active at resting membrane potentials and that this channel activation significantly contributes to the resting [Ca2+]i. These channels appear to be present throughout the neuron and may be located most densely in the proximal apical dendrites.


1997 ◽  
Vol 77 (2) ◽  
pp. 1023-1028 ◽  
Author(s):  
Robert B. Avery ◽  
Daniel Johnston

Avery, Robert B. and Daniel Johnston. Ca2+ channel antagonist U-92032 inhibits both T-type Ca2+ channels and Na+ channels in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 77: 1023–1028, 1997. The effects of 7-[[4-[bis(4-fluoropheny l ) - m e t h y l ] - 1 - p i p e r a z i n y l ] m e t h y l ] - 2 - [ ( 2 - h y d r o x y e t h y l ) a m i n o ]4 -( 1 - m e t h y l e t h y l ) - 2 , 4 , 6 - c y c l o h e p t a t r i e n - 1 - o n e  ( U - 9 2 0 3 2 ) ,  anewly described Ca2+ channel blocker, on voltage-gated ionic currents were measured. Whole cell voltage-clamp records were obtained from acutely isolated CA1 hippocampal pyramidal neurons from 7- to 14-day-old rats. Dimethyl sulfoxide, at either 0.01% or 0.1%, partially inhibited T-type Ca2+ currents (∼20% inhibition) but not high-voltage-activated (HVA) Ca2+ currents. Ethanol (0.2%) did not affect Ca2+ currents. U-92032 selectively inhibited T-type Ca2+ currents (median inhibiting concentration ∼ 500 nM). HVA Ca2+ currents were less sensitive, with ∼75% of the current resistant at 10 μM. Inhibition of Ca2+ currents was reversible. U-92032 inhibited Na+ currents at concentrations similar to those required for T-type currents (>33% block at 1 μM). Block of Na+ currents took several minutes to develop and was irreversible. Voltage-gated K+ currents were insensitive to U-92032 (1 or 10 μM). These results indicate that U-92032 inhibits both T-type Ca2+ channels and Na+ channels, constraining its utility in certain studies. Among Ca2+ channels, however, U-92032 should prove a useful tool for distinguishing physiological contributions of T-type channels.


2004 ◽  
Vol 44 (supplement) ◽  
pp. S245
Author(s):  
N Tanabe ◽  
Y Komatsuzaki ◽  
T Tsurugizawa ◽  
K Mitsuhashi ◽  
Y Ooishi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document