scholarly journals Heterogeneous photocatalysis of butanol and methyl ethyl ketone—characterization of catalyst and dynamic study

2003 ◽  
Vol 58 (3-6) ◽  
pp. 971-978 ◽  
Author(s):  
P. Monneyron ◽  
M.-H. Manero ◽  
J.-N. Foussard ◽  
F. Benoit-Marquié ◽  
M.-T. Maurette
2019 ◽  
Vol 31 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Fatimah Abdul Razzak Mageed ◽  
Mohanad Musa Kareem ◽  
Mohammad N. Al-Baiati

In this work, two new drug substituted monomers and new homogenous and heterogeneous polymers were synthesized loaded with medicinal properties to extend the controlled drug. The first step includes preparation of compound (F1) via reaction of maleic anhydride with 4-aminobenzoic acid. Then compound (F1) was converted to its corresponding acyl chloride derivative which reacted with amino drugs (sulfadiazine, chlordiazepoxide) afforded (F2 and F3) monomers. Homogeneous polymers (F8 and F9) prepared through polymerization reaction of free radicals of the monomers (F2 and F3) under nitrogen using methyl ethyl ketone peroxide (MEKP) as initiator. Heterogeneous polymers (F14 and F15) prepared through polymerization reaction of free radicals of the monomers (F2 and F3) separately with acrylic acid under nitrogen using methyl ethyl ketone peroxide (MEKP) as initiator. All these prepared monomers and polymers were characterized by FT-IR and 1H NMR, 13C NMR spectroscopies. Controlled drug release and swelling % was studied in different pH values at 37 ºC. Intrinsic viscosities were measured at 25 ºC with Ostwald viscometer and applied the characteristic of solubility for these polymers.


2014 ◽  
Vol 34 (1) ◽  
pp. 243-250
Author(s):  
Jianghong DING ◽  
Le XU ◽  
Hao XU ◽  
Haihong WU ◽  
Yueming LIU ◽  
...  

1998 ◽  
Vol 37 (4-5) ◽  
pp. 95-98 ◽  
Author(s):  
Nancy G. Love ◽  
Mary E. Rust ◽  
Kathy C. Terlesky

An anaerobic enrichment culture was developed from an anoxic/anaerobic/aerobic activated sludge sequencing batch reactor using methyl ethyl ketoxime (MEKO), a potent nitrification inhibitor, as the sole carbon and energy source in the absence of molecular oxygen and nitrate. The enrichment culture was gradually fed decreasing amounts of biogenic organic compounds and increasing concentrations of MEKO over 23 days until the cultures metabolized the oxime as the sole carbon source; the cultures were maintained for an additional 41 days on MEKO alone. Turbidity stabilized at approximately 100 mg/l total suspended solids. Growth on selective media plates confirmed that the microorganisms were utilizing the MEKO as the sole carbon and energy source. The time frame required for growth indicated that the kinetics for MEKO degradation are slow. A batch test indicated that dissolved organic carbon decreased at a rate comparable to MEKO consumption, while sulfate was not consumed. The nature of the electron acceptor in anaerobic MEKO metabolism is unclear, but it is hypothesized that the MEKO is hydrolyzed intracellularly to form methyl ethyl ketone and hydroxylamine which serve as electron donor and electron acceptor, respectively.


2004 ◽  
Vol 15 (7) ◽  
pp. 365-369 ◽  
Author(s):  
Belkıs Ustamehmetoğlu ◽  
A. Sezai Saraç ◽  
Nilgün Kızılcan ◽  
Ahmet Akar

Sign in / Sign up

Export Citation Format

Share Document