Enrichment and characterization of an anaerobic methyl ethyl ketoxime degrading culture from an anoxic/anaerobic/aerobic activated sludge sequencing batch reactor

1998 ◽  
Vol 37 (4-5) ◽  
pp. 95-98 ◽  
Author(s):  
Nancy G. Love ◽  
Mary E. Rust ◽  
Kathy C. Terlesky

An anaerobic enrichment culture was developed from an anoxic/anaerobic/aerobic activated sludge sequencing batch reactor using methyl ethyl ketoxime (MEKO), a potent nitrification inhibitor, as the sole carbon and energy source in the absence of molecular oxygen and nitrate. The enrichment culture was gradually fed decreasing amounts of biogenic organic compounds and increasing concentrations of MEKO over 23 days until the cultures metabolized the oxime as the sole carbon source; the cultures were maintained for an additional 41 days on MEKO alone. Turbidity stabilized at approximately 100 mg/l total suspended solids. Growth on selective media plates confirmed that the microorganisms were utilizing the MEKO as the sole carbon and energy source. The time frame required for growth indicated that the kinetics for MEKO degradation are slow. A batch test indicated that dissolved organic carbon decreased at a rate comparable to MEKO consumption, while sulfate was not consumed. The nature of the electron acceptor in anaerobic MEKO metabolism is unclear, but it is hypothesized that the MEKO is hydrolyzed intracellularly to form methyl ethyl ketone and hydroxylamine which serve as electron donor and electron acceptor, respectively.

2007 ◽  
Vol 56 (9) ◽  
pp. 157-165 ◽  
Author(s):  
A. Chiavola ◽  
M. Naso ◽  
E. Rolle ◽  
D. Trombetta

This paper provides new insights on the application of the ozonation process for the reduction of activated sludge production in a Sequencing Batch Reactor. The study was performed on two identical lab-scale SBRs plant, fed with domestic sewage: a fraction (1/3 of the working volume) of the activated sludge from one reactor (Exp SBR) was periodically subjected to ozonation for 30 minutes at 0.05 g O3/gSS and then recirculated before the beginning of the cycle; the other reactor was used as control and therefore managed at the same sludge retention time but without the application of ozonation. The effects of the recirculation of the ozonated sludge to the Exp SBR were evaluated in terms of biological nitrogen and carbon removal efficiencies, Mixed Liquor Volatile and Suspended Solids (MLSS and MLVSS, respectively) concentrations, effluent quality and sludge settleability. Besides, characterization of the ozonated sludge was carried out for different oxidant dosages (0.05, 0.07 and 0.37 g O3/gSS) and durations of the ozonation process (10, 20 and 30 minutes). The results show that at 0.05 g O3/gSS and 30 minutes contact time MLVSS as well as MLVSS/MLSS ratio do not change appreciably. Ozone dosage must be increased much further to obtain a relevant effect.


2009 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Xiao-ming Li ◽  
Dong-bo Wang ◽  
Qi Yang ◽  
Wei Zheng ◽  
Jian-bin Cao ◽  
...  

It was occasionally found that a significant nitrogen loss in solution under neutral pH value in a sequencing batch reactor with a single-stage oxic process using synthetic wastewater, and then further studies were to verify the phenomenon of nitrogen loss and to investigate the pathway of nitrogen removal. The result showed that good performance of nitrogen removal was obtained in system. 0–7.28 mg L−1 ammonia, 0.08–0.38 mg L−1 nitrite and 0.94–2.12 mg L−1 nitrate were determined in effluent, respectively, when 29.85–35.65 mg L−1 ammonia was feeding as the sole nitrogen source in influent. Furthermore, a substantial nitrogen loss in solution (95% of nitrogen influent) coupled with a little gaseous nitrogen increase in off-gas (7% of nitrogen influent) was determined during a typical aerobic phase. In addition, about 322 mg nitrogen accumulation (84% of nitrogen influent) was detected in activated sludge. Based on nitrogen mass balance calculation, the unaccounted nitrogen fraction and the ratio of nitrogen accumulation in sludge/nitrogen loss in solution were 14.6 mg (3.7% of nitrogen influent) and 0.89, respectively. The facts indicated that the essential pathway of nitrogen loss in solution in this study was excess nitrogen accumulation in activated sludge.


1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


Chemosphere ◽  
2020 ◽  
Vol 260 ◽  
pp. 127600
Author(s):  
Bin-Bin Wang ◽  
Qin Luo ◽  
Hui-Juan Li ◽  
Qian Yao ◽  
Lin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document