Unusual solvent effects on the fluorescence quenching rate constants of a thioxanthone derivative by n-butylamine and isoprene

1998 ◽  
Vol 291 (1-2) ◽  
pp. 207-214 ◽  
Author(s):  
D. Burget ◽  
P. Jacques
2002 ◽  
Vol 67 (8) ◽  
pp. 1154-1164 ◽  
Author(s):  
Nachiappan Radha ◽  
Meenakshisundaram Swaminathan

The fluorescence quenching of 2-aminodiphenylamine (2ADPA), 4-aminodiphenylamine (4ADPA) and 4,4'-diaminodiphenylamine (DADPA) with tetrachloromethane, chloroform and dichloromethane have been studied in hexane, dioxane, acetonitrile and methanol as solvents. The quenching rate constants for the process have also been obtained by measuring the lifetimes of the fluorophores. The quenching was found to be dynamic in all cases. For 2ADPA and 4ADPA, the quenching rate constants of CCl4 and CHCl3 depend on the viscosity, whereas in the case of CH2Cl2, kq depends on polarity. The quenching rate constants for DADPA with CCl4 are viscosity-dependent but the quenching with CHCl3 and CH2Cl2 depends on the polarity of the solvents. From the results, the quenching mechanism is explained by the formation of a non-emissive complex involving a charge-transfer interaction between the electronically excited fluorophores and ground-state chloromethanes.


1996 ◽  
Vol 92 (18) ◽  
pp. 3327 ◽  
Author(s):  
Carlos A. Chesta ◽  
Vicente Avila ◽  
Arnaldo T. Soltermann ◽  
Carlos M. Previtali ◽  
Juan J. Cosa ◽  
...  

2011 ◽  
Vol 15 (09n10) ◽  
pp. 871-882 ◽  
Author(s):  
Shawkat M. Aly ◽  
Hannah Guernon ◽  
Brigitte Guérin ◽  
Pierre D. Harvey

Two new zinc(II)porphyrin oligopeptide conjugates (zinc(II)-5,10,15,20-bis[4-(peptide)- phenyl]porphyrin (5) and -tetrakis[3,5-di(peptide)phenyl]porphyrin (9; peptide = -CH2(CO)Gly-Phe-Ala-CNH2) were prepared using the click chemistry with azides and ethynyl-containing precursors. The spectroscopic signature (S0→S1 and transient T1→Tn absorption, excitation and emission spectra) are typical for zinc(II)porphyrin and shows no perturbation upon anchoring the oligopeptides, whereas some small decreases in the photophysical parameters (𝜏F and ΦF), and larger decrease in T1 lifetimes are noted, which are attributable to the known "loose bolt" effect. The structure for 9 in solution was addressed qualitatively using computer modeling and the comparison of the bimolecular fluorescence quenching rate constants between 5 and 9 using C60 as a photooxidative agent. While 5 exhibits a totally accessible zinc(II)porphyrin unit for a C60 approach, 9 shows a slower quenching rate constant meaning some steric hindrance must be present.


2021 ◽  
Vol 22 (2) ◽  
pp. 885
Author(s):  
Krzysztof Żamojć ◽  
Irena Bylińska ◽  
Wiesław Wiczk ◽  
Lech Chmurzyński

The influence of the stable 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) nitroxide and its six C4-substituted derivatives, as well as two C3-substituted analogues of 2,2,5,5-tetramethylpyrrolidynyl-N-oxyl (PROXYL) nitroxide on the chosen fluoroquinolone antibiotics (marbofloxacin, ciprofloxacin, danofloxacin, norfloxacin, enrofloxacin, levofloxacin and ofloxacin), has been examined in aqueous solutions by UV absorption as well as steady-state and time-resolved fluorescence spectroscopies. The mechanism of fluorescence quenching has been specified and proved to be purely dynamic (collisional) for all the studied systems, which was additionally confirmed by temperature dependence experiments. Moreover, the selected quenching parameters—that is, Stern–Volmer quenching constants and bimolecular quenching rate constants—have been determined and explained. The possibility of electron transfer was ruled out, and the quenching was found to be diffusion-limited, being a result of the increase in non-radiative processes. Furthermore, as the chosen nitroxides affected the fluorescence of fluoroquinolone antibiotics in different ways, an influence of the structure and the type of substituents in the molecules of both fluoroquinolones and stable radicals on the quenching efficiency has been determined and discussed. Finally, the impact of the solvent’s polarity on the values of bimolecular quenching rate constants has been explained. The significance of the project comes from many applications of nitroxides in chemistry, biology and industry.


The fluorescence quenching of 2-phenoxyaniline (2PAN) by chloromethanes were studied in hexane, dioxane, acetonitrile and methanol. The quenching rate constants (kq) are large with CCl4 and CHCl3 and close to diffusion rate constant (kdiff) and viscosity dependent, where with CH2Cl2 they are less. No clear cut variation of solvent polarity or viscosity is observed for CH2Cl2. Intermediate donor-acceptor complex formation is suggested for CH2Cl2 quenching. kq varies with electron affinity of quenchers suggesting the formation of non-emissive exciplex in quenching.


2001 ◽  
Vol 115 (7) ◽  
pp. 3144-3154 ◽  
Author(s):  
N. Sadeghi ◽  
D. W. Setser ◽  
A. Francis ◽  
U. Czarnetzki ◽  
H. F. Döbele

1983 ◽  
Vol 61 (5) ◽  
pp. 801-808 ◽  
Author(s):  
Yuan L. Chow ◽  
Gonzalo E. Buono-Core ◽  
Bronislaw Marciniak ◽  
Carol Beddard

Bis(acetylacetonato)copper(II), Cu(acac)2, quenches triplet excited states of ketones and polynuclear aromatic hydrocarbons efficiently, but only aromatic ketones with high triplet energy successfully sensitize photoreduction of Cu(acac)2 in alcohols under nitrogen to give derivatives of aeetylacetonatocopper(I), Cu(acac). For the triplet state benzophenone-sensitized photoreduction of Cu(acac)2, the quantum yields of photoreduction (ΦC) and those of benzophenone disappearance (ΦB) were determined in methanol with various concentrations of Cu(acac)2. The values of the quenching rate constant, kq, determined from these two types of monitors on the basis of the proposed mechanism were in good agreement (6.89 ~ 7.35 × 109 M−1 s−1). This value was higher, by a factor of about two, than that obtained from the monitor of the benzophenone triplet decay rates generated by flash photolysis in the presence of Cu(acac)2. The quenching rate constants of various aromatic ketone and hydrocarbon triplet states by Cu(acac)2 were determined by flash photolysis to be in the order of the diffusion rate constant and the quantum yields of these photoreductions were found to be far from unity. Paramagnetic quenching, with contributions of electron exchange and charge transfer, was proposed as a possible quenching mechanism. For a series of aromatic ketone sensitizers with higher triplet energy, this mechanism was used to rationalize the observed high quenching rate constants in contrast to the low quantum yields of photoreduction.


Sign in / Sign up

Export Citation Format

Share Document