Transient and steady state thermal analysis with coupled fluid flow and heat conduction

1969 ◽  
Vol 1 (4) ◽  
pp. 59
Author(s):  
Imane Aslib ◽  
Hamid Hamza ◽  
Nisrine Hanchi ◽  
Jawad Lahjomri ◽  
Abdelaziz Oubarra

This paper deals with the transient thermal analysis of two-dimensional cylindrical anisotropic pin fin that contains tip convection and subjected to a prescribed temperature at the fin base. The heat conduction equation contains a dual second-order derivation, which precludes solving the equation by direct application of common exact methods. Therefore, an appropriate canonical mapping is selected as a solution to cancel the dual derivation of temperature in the mapped equations. The alternating-direction implicit finite difference method (ADI) performs the integration of the mapped equations in the novel space, which involve a complicate geometry. Applying the inverse spatial transformation provides transient temperature profile in the real geometry for full-field configuration. The established numerical code has been validated successfully with the analytical solutions of the usual fins (orthotropic and isotropic). The anisotropy effect is investigated by means of various contour plots of the temperature profile as well as heat transfer rate from the fin base and the effectiveness for different parameters of study (kr/kz, krz/kz , and  Bir) in transient and steady-state heat conduction. The numerical code allows the study of the thermal behavior of anisotropic, orthotropic, and isotropic cylindrical pin fin according to the geometrical and physical parameters, as well as the thermal conditions to which the pin fin is subjected. A parametric study is performed in view to compare the thermal behavior of the various pin fin kinds submitted to the same conditions.


2018 ◽  
Vol 45 (1) ◽  
pp. 83-94
Author(s):  
Jela Burazer

Energy separation is a spontaneous energy redistribution within a fluid flow. As a consequence, there are places with higher and lower values of total temperature in the fluid flow. It is characteristic for many flow geometries. This paper deals with the energy separation in a cylinder wake. Two flow conditions are being considered-transient and steady-state flow in the wake. Two different solvers from the open source package OpenFOAM are used in order to capture the phenomenon of energy separation. One of these solvers is modified for the purpose of calculation in a particular case of the vortex street flow. The energy equation based on the internal energy present in this solver is replaced by the energy equation written in the form of a total enthalpy. The other solver has been previously tested in the vortex tube flow, and can also capture the energy separation in the steady-state wake flow of the cylinder. In both cylinder wake flow conditions, a two-dimensional computational domain is used. Standard ?? ? ?? model is used for computations. It is proved that OpenFOAM is capable of capturing the energy separation phenomenon in a proper way in both of the wake flow cases. Good agreement between the experimental results and the ones from computations is obtained in the case of steady-state flow in the wake. Previous research findings are also confirmed in the case of vortex street flow.


Author(s):  
Humberto Alves da Silveira Monteiro ◽  
Guilherme Garcia Botelho ◽  
Roque Luiz da Silva Pitangueira ◽  
Rodrigo Peixoto ◽  
FELICIO BARROS

Sign in / Sign up

Export Citation Format

Share Document