An advanced evolutionary algorithm for parameter estimation of the discrete Kalman filter

2001 ◽  
Vol 142 (1-3) ◽  
pp. 248-254 ◽  
Author(s):  
Zeke S.H. Chan ◽  
H.W. Ngan ◽  
Y.F. Fung ◽  
A.B. Rad
2010 ◽  
Vol 221 (5) ◽  
pp. 840-849 ◽  
Author(s):  
Raphaël Duboz ◽  
David Versmisse ◽  
Morgane Travers ◽  
Eric Ramat ◽  
Yunne-Jai Shin

2010 ◽  
Vol 2 ◽  
pp. 117959721000200 ◽  
Author(s):  
Chia-Hua Chuang ◽  
Chun-Liang Lin

Gene networks in biological systems are not only nonlinear but also stochastic due to noise corruption. How to accurately estimate the internal states of the noisy gene networks is an attractive issue to researchers. However, the internal states of biological systems are mostly inaccessible by direct measurement. This paper intends to develop a robust extended Kalman filter for state and parameter estimation of a class of gene network systems with uncertain process noises. Quantitative analysis of the estimation performance is conducted and some representative examples are provided for demonstration.


2011 ◽  
Vol 15 (8) ◽  
pp. 2437-2457 ◽  
Author(s):  
S. Nie ◽  
J. Zhu ◽  
Y. Luo

Abstract. The performance of the ensemble Kalman filter (EnKF) in soil moisture assimilation applications is investigated in the context of simultaneous state-parameter estimation in the presence of uncertainties from model parameters, soil moisture initial condition and atmospheric forcing. A physically based land surface model is used for this purpose. Using a series of identical twin experiments in two kinds of initial parameter distribution (IPD) scenarios, the narrow IPD (NIPD) scenario and the wide IPD (WIPD) scenario, model-generated near surface soil moisture observations are assimilated to estimate soil moisture state and three hydraulic parameters (the saturated hydraulic conductivity, the saturated soil moisture suction and a soil texture empirical parameter) in the model. The estimation of single imperfect parameter is successful with the ensemble mean value of all three estimated parameters converging to their true values respectively in both NIPD and WIPD scenarios. Increasing the number of imperfect parameters leads to a decline in the estimation performance. A wide initial distribution of estimated parameters can produce improved simultaneous multi-parameter estimation performances compared to that of the NIPD scenario. However, when the number of estimated parameters increased to three, not all parameters were estimated successfully for both NIPD and WIPD scenarios. By introducing constraints between estimated hydraulic parameters, the performance of the constrained three-parameter estimation was successful, even if temporally sparse observations were available for assimilation. The constrained estimation method can reduce RMSE much more in soil moisture forecasting compared to the non-constrained estimation method and traditional non-parameter-estimation assimilation method. The benefit of this method in estimating all imperfect parameters simultaneously can be fully demonstrated when the corresponding non-constrained estimation method displays a relatively poor parameter estimation performance. Because all these constraints between parameters were obtained in a statistical sense, this constrained state-parameter estimation scheme is likely suitable for other land surface models even with more imperfect parameters estimated in soil moisture assimilation applications.


2021 ◽  
Author(s):  
Afshin Rahimi

There has been an increasing interest in fault diagnosis in recent years, as a result of the growing demand for higher performance, efficiency, reliability and safety in control systems. A faulty sensor or actuator may cause process performance degradation, process shut down, or a fatal accident. Quick fault detection and isolation can help avoid abnormal event progression and minimize the quality and productivity offsets. In space systems specifically, space and power are limited in the satellites, which means that hardware redundancy is not very practical. If actuator faults occur, analytical redundancy techniques should be employed to determine if, where, and how the fault(s) occurred. To do so, different approaches have been developed and studied and one of the wellknown approaches in the literature is using the Kalman Filter as an observer for the purpose of parameter estimation and fault detection. The gains for the filter should be selected and the selection of the process and measurement noise statistics, commonly referred to as “filter tuning,” is a major implementation issue for the Kalman filter. This process can have a significant impact on the filter performance. In practice, Kalman filter tuning is often an ad-hoc process involving a considerable amount of time for trial and error to obtain a filter with desirable –qualitative or quantitative- performance characteristics. This thesis focuses on presenting an algorithm for automation of the selection of the gains using an evolutionary swarm intelligence based optimization algorithm (Particle Swarm) to minimize the residuals of the estimated parameters. The methodology can be applied to any filter or controller but in this thesis, an Adaptive Unscented Kalman Filter parameter estimation applied to a reaction wheel unit is used for the purpose of performance evaluation of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document