Biomedical Engineering and Computational Biology
Latest Publications


TOTAL DOCUMENTS

45
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Published By "Libertas Academica, Ltd."

1179-5972, 1179-5972

2021 ◽  
Vol 12 ◽  
pp. 117959722098382
Author(s):  
Farid Menaa ◽  
Yazdian Fatemeh ◽  
Sandeep K Vashist ◽  
Haroon Iqbal ◽  
Olga N Sharts ◽  
...  

Graphene, a relatively new two-dimensional (2D) nanomaterial, possesses unique structure (e.g. lighter, harder, and more flexible than steel) and tunable physicochemical (e.g. electronical, optical) properties with potentially wide eco-friendly and cost-effective usage in biosensing. Furthermore, graphene-related nanomaterials (e.g. graphene oxide, doped graphene, carbon nanotubes) have inculcated tremendous interest among scientists and industrials for the development of innovative biosensing platforms, such as arrays, sequencers and other nanooptical/biophotonic sensing systems (e.g. FET, FRET, CRET, GERS). Indeed, combinatorial functionalization approaches are constantly improving the overall properties of graphene, such as its sensitivity, stability, specificity, selectivity, and response for potential bioanalytical applications. These include real-time multiplex detection, tracking, qualitative, and quantitative characterization of molecules (i.e. analytes [H2O2, urea, nitrite, ATP or NADH]; ions [Hg2+, Pb2+, or Cu2+]; biomolecules (DNA, iRNA, peptides, proteins, vitamins or glucose; disease biomarkers such as genetic alterations in BRCA1, p53) and cells (cancer cells, stem cells, bacteria, or viruses). However, there is still a paucity of comparative reports that critically evaluate the relative toxicity of carbon nanoallotropes in humans. This manuscript comprehensively reviews the biosensing applications of graphene and its derivatives (i.e. GO and rGO). Prospects and challenges are also introduced.


2021 ◽  
Vol 12 ◽  
pp. 117959722110419
Author(s):  
Šimen Ravnik ◽  
Ines Žabkar ◽  
Uršula Prosenc Zmrzljak ◽  
Ivana Jovčevska ◽  
Neja Šamec ◽  
...  

With the increasing number of molecular biology techniques, large numbers of oligonucleotides are frequently involved in individual research projects. Thus, a dedicated electronic oligonucleotide management system is expected to provide several benefits such as increased oligonucleotide traceability, facilitated sharing of oligonucleotides between laboratories, and simplified (bulk) ordering of oligonucleotides. Herein, we describe OligoPrime, an information system for oligonucleotide management, which presents a computational support for all steps in an oligonucleotide lifecycle, namely, from its ordering and storage to its application, and disposal. OligoPrime is easy to use since it is accessible via a web browser and does not require any installation from the end user’s perspective. It allows filtering and search of oligonucleotides by various parameters, which include the exact location of an oligonucleotide, its sequence, and availability. The oligonucleotide database behind the system is shared among the researchers working in the same laboratory or research group. Users might have different roles which define the access permissions and range from students to researchers and primary investigators. Furthermore, OligoPrime is easy to manage and install and is based on open-source software solutions. Its code is freely available at https://github.com/OligoPrime . Moreover, an implementation of OligoPrime, which can be used for testing is available at http://oligoprime.xyz/ . To our knowledge, OligoPrime is the only software solution dedicated specifically to oligonucleotide management. We strongly believe that it has a large potential to enhance the transparency of use and to simplify the management of oligonucleotides in academic laboratories and research groups.


2020 ◽  
Vol 11 ◽  
pp. 117959722094143
Author(s):  
Dilshan Sooriyaarachchi ◽  
Shahrima Maharubin ◽  
George Z Tan

The integration of nanomaterials in microfluidic devices has emerged as a new research paradigm. Microfluidic devices composed of ZnO nanowires have been developed for the collection of urine extracellular vesicles (EVs) at high efficiency and in situ extraction of various microRNAs (miRNAs). The devices can be used for diagnosing various diseases, including kidney diseases and cancers. A major research need for developing micro total analysis systems is to enhance extraction efficiency. This article presents a novel fabrication method for a herringbone-patterned microfluidic device anchored with ZnO nanowire arrays. The substrates with herringbone patterns were created by maskless photolithography. The ZnO nanowire arrays were grown on the substrates by chemical bathing. The patterned design was to introduce turbulent flows as opposed to laminar flow in traditional devices to increase the mixing and contact of the urine sample with ZnO nanowires. The device showed reduced flow rates compared with conventional planar microfluidic channels and successfully extracted urine EV-encapsulated miRNAs.


2020 ◽  
Vol 11 ◽  
pp. 117959722091282
Author(s):  
Yu Tzu Wu ◽  
Matheus K Gomes ◽  
Willian HA da Silva ◽  
Pedro M Lazari ◽  
Eric Fujiwara

Force myography (FMG) is an appealing alternative to traditional electromyography in biomedical applications, mainly due to its simpler signal pattern and immunity to electrical interference. Most FMG sensors, however, send data to a computer for further processing, which reduces the user mobility and, thus, the chances for practical application. In this sense, this work proposes to remodel a typical optical fiber FMG sensor with smaller portable components. Moreover, all data acquisition and processing routines were migrated to a Raspberry Pi 3 Model B microprocessor, ensuring the comfort of use and portability. The sensor was successfully demonstrated for 2 input channels and 9 postures classification with an average precision and accuracy of ~99.5% and ~99.8%, respectively, using a feedforward artificial neural network of 2 hidden layers and a competitive output layer.


2020 ◽  
Vol 11 ◽  
pp. 117959722094810
Author(s):  
Martha Z Vardaki ◽  
Nikolaos Kourkoumelis

Raman spectroscopy is a group of analytical techniques, currently applied in several research fields, including clinical diagnostics. Tissue-mimicking optical phantoms have been established as an essential intermediate stage for medical applications with their employment from spectroscopic techniques to be constantly growing. This review outlines the types of tissue phantoms currently employed in different biomedical applications of Raman spectroscopy, focusing on their composition and optical properties. It is therefore an attempt to present an informed range of options for potential use to the researchers.


2019 ◽  
Vol 10 ◽  
pp. 117959721985656 ◽  
Author(s):  
Christopher V Cosgriff ◽  
Leo Anthony Celi ◽  
David J Stone

As big data, machine learning, and artificial intelligence continue to penetrate into and transform many facets of our lives, we are witnessing the emergence of these powerful technologies within health care. The use and growth of these technologies has been contingent on the availability of reliable and usable data, a particularly robust resource in critical care medicine where continuous monitoring forms a key component of the infrastructure of care. The response to this opportunity has included the development of open databases for research and other purposes; the development of a collaborative form of clinical data science intended to fully leverage these data resources, and the creation of data-driven applications for purposes such as clinical decision support. Most recently, data levels have reached the thresholds required for the development of robust artificial intelligence features for clinical purposes. The systematic capture and analysis of clinical data in both individuals and populations allows us to begin to move toward precision medicine in the intensive care unit (ICU). In this perspective review, we examine the fundamental role of data as we present the current progress that has been made toward an artificial intelligence (AI)-supported, data-driven precision critical care medicine.


2019 ◽  
Vol 10 ◽  
pp. 117959721985895 ◽  
Author(s):  
Bryan Stanfill ◽  
Sarah Reehl ◽  
Lisa Bramer ◽  
Ernesto S Nakayasu ◽  
Stephen S Rich ◽  
...  

Classification is a common technique applied to ’omics data to build predictive models and identify potential markers of biomedical outcomes. Despite the prevalence of case-control studies, the number of classification methods available to analyze data generated by such studies is extremely limited. Conditional logistic regression is the most commonly used technique, but the associated modeling assumptions limit its ability to identify a large class of sufficiently complicated ’omic signatures. We propose a data preprocessing step which generalizes and makes any linear or nonlinear classification algorithm, even those typically not appropriate for matched design data, available to be used to model case-control data and identify relevant biomarkers in these study designs. We demonstrate on simulated case-control data that both the classification and variable selection accuracy of each method is improved after applying this processing step and that the proposed methods are comparable to or outperform existing variable selection methods. Finally, we demonstrate the impact of conditional classification algorithms on a large cohort study of children with islet autoimmunity.


2018 ◽  
Vol 9 ◽  
pp. 117959721878108 ◽  
Author(s):  
David Tes ◽  
Karl Kratkiewicz ◽  
Ahmed Aber ◽  
Luke Horton ◽  
Mohsin Zafar ◽  
...  

Alzheimer disease is the most common form of dementia, affecting more than 5 million people in the United States. During the progression of Alzheimer disease, a particular protein begins to accumulate in the brain and also in extensions of the brain, ie, the retina. This protein, amyloid-β (Aβ), exhibits fluorescent properties. The purpose of this research article is to explore the implications of designing a fluorescent imaging system able to detect Aβ proteins in the retina. We designed and implemented a fluorescent imaging system with a range of applications that can be reconfigured on a fluorophore to fluorophore basis and tested its feasibility and capabilities using Cy5 and CRANAD-2 imaging probes. The results indicate a promising potential for the imaging system to be used to study the Aβ biomarker. A performance evaluation involving ex vivo and in vivo experiments is planned for future study.


2018 ◽  
Vol 9 ◽  
pp. 117959721879025
Author(s):  
Elsje Pienaar

Rare events such as genetic mutations or cell-cell interactions are important contributors to dynamics in complex biological systems, eg, in drug-resistant infections. Computational approaches can help analyze rare events that are difficult to study experimentally. However, analyzing the frequency and dynamics of rare events in computational models can also be challenging due to high computational resource demands, especially for high-fidelity stochastic computational models. To facilitate analysis of rare events in complex biological systems, we present a multifidelity analysis approach that uses medium-fidelity analysis (Monte Carlo simulations) and/or low-fidelity analysis (Markov chain models) to analyze high-fidelity stochastic model results. Medium-fidelity analysis can produce large numbers of possible rare event trajectories for a single high-fidelity model simulation. This allows prediction of both rare event dynamics and probability distributions at much lower frequencies than high-fidelity models. Low-fidelity analysis can calculate probability distributions for rare events over time for any frequency by updating the probabilities of the rare event state space after each discrete event of the high-fidelity model. To validate the approach, we apply multifidelity analysis to a high-fidelity model of tuberculosis disease. We validate the method against high-fidelity model results and illustrate the application of multifidelity analysis in predicting rare event trajectories, performing sensitivity analyses and extrapolating predictions to very low frequencies in complex systems. We believe that our approach will complement ongoing efforts to enable accurate prediction of rare event dynamics in high-fidelity computational models.


2018 ◽  
Vol 9 ◽  
pp. 117959721879025 ◽  
Author(s):  
David Tes ◽  
Ahmed Aber ◽  
Mohsin Zafar ◽  
Luke Horton ◽  
Audrey Fotouhi ◽  
...  

Background: Granular cell tumor (GCT) is a relatively uncommon tumor that may affect the skin. The tumor can develop anywhere on the body, although it is predominately seen in oral cavities and in the head and neck regions. Here, we present the results of optical coherence tomography (OCT) imaging of a large GCT located on the abdomen of a patient. We also present an analytical method to differentiate between healthy tissue and GCT tissues. Materials and methods: A multibeam, Fourier domain, swept source OCT was used for imaging. The OCT had a central wavelength of 1305 ± 15 nm and lateral and axial resolutions of 7.5 and 10 µm, respectively. Qualitative and quantitative analyses of the tumor and healthy skin are reported. Results: Abrupt changes in architectures of the dermal and epidermal layers in the GCT lesion were observed. These architectural changes were not observed in healthy skin. Discussion: To quantitatively differentiate healthy skin from tumor regions, an optical attenuation coefficient analysis based on single-scattering formulation was performed. The methodology introduced here could have the capability to delineate boundaries of a tumor prior to surgical excision.


Sign in / Sign up

Export Citation Format

Share Document