Genomic organization of a sex specific gene: The primary sperm receptor of the mouse zona pellucida

1989 ◽  
Vol 131 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Margaret E. Chamberlin ◽  
Jurrien Dean
Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 1-17 ◽  
Author(s):  
P.M. Wassarman

Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. SCI-17-SCI-17
Author(s):  
Mark T. Groudine ◽  
Indika Rajapakse ◽  
David Scalzo ◽  
Michael Perlman ◽  
Charles L. Kooperberg ◽  
...  

Abstract Abstract SCI-17 We have investigated the relationships between lineage-specific gene expression, and total genomic organization during hematopoiesis. First, we determined the linear chromosomal distribution of genes that are co-regulated (identified via microarray analysis) when murine hematopoietic progenitor cells (FDCP-mixA) are differentiated to the erythroid and neutrophil lineages, as well as the organization of all chromosomes (in the form of rosettes) in the three cell types. Our analysis revealed a significant tendency for co-regulated genes to be proximal, which is related to the association of homologous chromosomes and the spatial juxtaposition of lineage-specific gene domains. This led us to hypothesize that the genome—at the level of chromosomes—may self-organize to facilitate coordinate gene regulation during cellular differentiation. We tested this hypothesis by applying the approaches of distance matrices and coupled oscillators to our datasets of gene expression and chromosomal associations from the differentiation of the progenitor to the erythroid and neutrophil lineages. Our analysis revealed that coordinate gene expression undergoes a phase transition—characterized by an increase in entropy—upon commitment of the progenitor. As differentiation continues, there is a gradual loss of entropy, culminating in a highly ordered state in the differentiated cell types. The coregulated gene sets of the semi-ordered progenitor and ordered erythroid and neutrophil lineages are significantly correlated with lineage-specific chromosomal association patterns. Furthermore, by transforming the gene expression networks along the time course to corresponding chromosomal association matrices, we found that chromosomal topologies change dynamically during differentiation but, as with gene expression, result in a more highly ordered state in the differentiated cell types. Our analysis demonstrates that the networks of co-regulated gene expression and chromosomal association are mutually related during differentiation, resulting in the self-organization of lineage-specific chromosomal topologies. Disclosures No relevant conflicts of interest to declare.


Genomics ◽  
1998 ◽  
Vol 51 (3) ◽  
pp. 401-407 ◽  
Author(s):  
Martin H Fenner ◽  
Julia E Parrish ◽  
Yvonne Boyd ◽  
Vivienne Reed ◽  
Marcy MacDonald ◽  
...  

1990 ◽  
Vol 10 (4) ◽  
pp. 1507-1515
Author(s):  
L F Liang ◽  
S M Chamow ◽  
J Dean

The zona pellucida surrounds all mammalian oocytes and plays a vital role at fertilization and in early development. The genes that code for two of the mouse zona proteins (ZP2 and ZP3) represent a developmentally regulated set of genes whose expression serves as markers of mouse oocyte growth and differentiation. We previously characterized the single-copy Zp-3 gene and showed that its expression is oocyte specific and restricted to a narrow window of oocyte development. We now define the Zp-2 gene transcript and show that it is coordinately expressed with Zp-3 only during the 2-week growth phase of oogenesis that occurs prior to ovulation. Like Zp-3, the expression of Zp-2 is restricted to oocytes, and, although not detectable in resting oocytes, both ZP2 and ZP3 transcripts accumulate to become very abundant messengers in 50-microns-diameter oocytes. Ovulated eggs contain ZP2 and ZP3 transcripts which are 200 nucleotides shorter than those found in growing oocytes and have an abundance of less than 5% of the peak levels. In an attempt to understand the molecular details associated with the developmentally regulated, tissue-specific gene expression of the zona genes, the Zp-2 genetic locus has been characterized and its 5' flanking sequences have been compared with those of Zp-3. Both genes contain three short (8- to 12-base-pair) DNA sequences of 80 to 88% identity located within 250 base pairs of their transcription start sites.


Sign in / Sign up

Export Citation Format

Share Document