promoter analysis
Recently Published Documents


TOTAL DOCUMENTS

569
(FIVE YEARS 13)

H-INDEX

51
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261215
Author(s):  
Qurat-ul ain-Ali ◽  
Nida Mushtaq ◽  
Rabia Amir ◽  
Alvina Gul ◽  
Muhammad Tahir ◽  
...  

Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.


Author(s):  
Seyedeh Mehri Javadi ◽  
Zahra-Sadat Shobbar ◽  
Asa Ebrahimi ◽  
Maryam Shahbazi

Abstract Background Barley (Hordeum vulgare L.) is one of the most important cereals worldwide. Although this crop is drought-tolerant, water deficiency negatively affects its growth and production. To detect key genes involved in drought tolerance in barley, a reconstruction of the related gene network and discovery of the hub genes would help. Here, drought-responsive genes in barley were collected through analysis of the available microarray datasets (− 5 ≥ Fold change ≥ 5, adjusted p value ≤ 0.05). Protein-protein interaction (PPI) networks were reconstructed. Results The hub genes were identified by Cytoscape software using three Cyto-hubba algorithms (Degree, Closeness, and MNC), leading to the identification of 17 and 16 non-redundant genes at vegetative and reproductive stages, respectively. These genes consist of some transcription factors such as HvVp1, HvERF4, HvFUS3, HvCBF6, DRF1.3, HvNAC6, HvCO5, and HvWRKY42, which belong to AP2, NAC, Zinc-finger, and WRKY families. In addition, the expression pattern of four hub genes was compared between the two studied cultivars, i.e., “Yousef” (drought-tolerant) and “Morocco” (susceptible). The results of real-time PCR revealed that the expression patterns corresponded well with those determined by the microarray. Also, promoter analysis revealed that some TF families, including AP2, NAC, Trihelix, MYB, and one modular (composed of two HD-ZIP TFs), had a binding site in 85% of promoters of the drought-responsive genes and of the hub genes in barley. Conclusions The identified hub genes, especially those from AP2 and NAC families, might be among key TFs that regulate drought-stress response in barley and are suggested as promising candidate genes for further functional analysis.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Boimpoundi Eunice Flavie Ouali ◽  
Tzu-Yu Liu ◽  
Chun-Yen Lu ◽  
Pei-Yuan Cheng ◽  
Chao-Li Huang ◽  
...  

Sugar Tech ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 686-696
Author(s):  
Xiao-Rong Miao ◽  
Xu-Peng Zeng ◽  
Jun-Qi Niu ◽  
Aamir Mahmood ◽  
Li-Tao Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document