Evaluation of interfacial fracture toughness of a flip-chip package and a bimaterial system by a combined experimental and numerical method

1999 ◽  
Vol 64 (6) ◽  
pp. 781-797 ◽  
Author(s):  
Jianjun Wang ◽  
Daqing Zou ◽  
Minfu Lu ◽  
Wei Ren ◽  
Sheng Liu
1998 ◽  
Vol 120 (2) ◽  
pp. 150-155 ◽  
Author(s):  
X. Yan ◽  
R. K. Agarwal

Two test specimens are developed to measure interfacial fracture toughness in flip-chip assemblies. The specimens consist of three layers: silicon chip, underfill, and circuit board. Two symmetric edge cracks are embedded along the interface, either between the chip and the underfill or between the underfill and the circuit board. The specimens are subjected to four-point-bend loading and critical loads are obtained. Analytical solutions for energy release rate have been derived for these two specimens and used to obtain the toughness from the measured critical loads. These specimens have been used to evaluate material combinations of chip passivation, underfill and solder mask for desired interfacial strength.


2007 ◽  
Vol 73 (735) ◽  
pp. 1266-1272 ◽  
Author(s):  
Yoshiaki NOMURA ◽  
Masaki NAGAI ◽  
Toru IKEDA ◽  
Noriyuki MIYAZAKI

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2225 ◽  
Author(s):  
Ikramullah ◽  
Samsul Rizal ◽  
Yoshikazu Nakai ◽  
Daiki Shiozawa ◽  
H.P.S. Abdul Khalil ◽  
...  

The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.


Sign in / Sign up

Export Citation Format

Share Document