Direct channel-gating and modulatory effects of triiodothyronine on recombinant GABAA receptors

1998 ◽  
Vol 349 (1) ◽  
pp. 115-121 ◽  
Author(s):  
Richard Chapell ◽  
Joseph Martin ◽  
Tina K Machu ◽  
Nancy J Leidenheimer
2016 ◽  
Vol 125 (6) ◽  
pp. 1144-1158 ◽  
Author(s):  
Anahita Nourmahnad ◽  
Alex T. Stern ◽  
Mayo Hotta ◽  
Deirdre S. Stewart ◽  
Alexis M. Ziemba ◽  
...  

Abstract Background γ-Aminobutyric acid type A (GABAA) receptors mediate important effects of intravenous general anesthetics. Photolabel derivatives of etomidate, propofol, barbiturates, and a neurosteroid get incorporated in GABAA receptor transmembrane helices M1 and M3 adjacent to intersubunit pockets. However, photolabels have not been consistently targeted at heteromeric αβγ receptors and do not form adducts with all contact residues. Complementary approaches may further define anesthetic sites in typical GABAA receptors. Methods Two mutation-based strategies, substituted tryptophan sensitivity and substituted cysteine modification–protection, combined with voltage-clamp electrophysiology in Xenopus oocytes, were used to evaluate interactions between four intravenous anesthetics and six amino acids in M1 helices of α1, β3, and γ2L GABAA receptor subunits: two photolabeled residues, α1M236 and β3M227, and their homologs. Results Tryptophan substitutions at α1M236 and positional homologs β3L231 and γ2L246 all caused spontaneous channel gating and reduced γ-aminobutyric acid EC50. Substituted cysteine modification experiments indicated etomidate protection at α1L232C and α1M236C, R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid protection at β3M227C and β3L231C, and propofol protection at α1M236C and β3M227C. No alphaxalone protection was evident at the residues the authors explored, and none of the tested anesthetics protected γ2I242C or γ2L246C. Conclusions All five intersubunit transmembrane pockets of GABAA receptors display similar allosteric linkage to ion channel gating. Substituted cysteine modification and protection results were fully concordant with anesthetic photolabeling at α1M236 and β3M227 and revealed overlapping noncongruent sites for etomidate and propofol in β+–α– interfaces and R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirinylphenyl) barbituric acid and propofol in α+–β– and γ+–β– interfaces. The authors’ results identify the α+–γ– transmembrane interface as a potentially unique orphan modulator site.


Sign in / Sign up

Export Citation Format

Share Document