complex permeability
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 46)

H-INDEX

35
(FIVE YEARS 3)

2022 ◽  
Vol 19 (1) ◽  
pp. 1714
Author(s):  
Affandi Faisal Kurniawan ◽  
Mohammad Syaiful Anwar ◽  
Khoirotun Nadiyyah ◽  
Yana Taryana ◽  
Muhammad Mahyiddin Ramli ◽  
...  

The purpose of this study is to optimize the thickness of a layered graphenic-based carbon compound, which is a non-magnetic material derived from biomass (old coconut shell). After the sample was exfoliated using HCl solution, the morphological structure showed that the material used in this study is a reduced graphene oxide (rGO), similar to carbon but with a thickness of less than 10 nm and lateral size in submicron (100 nm). The sample with a 2 mm thickness was then characterized using a vector network analyzer (VNA) to measure its reflection loss (RL). The measurement result is evaluated by converting the S-parameter values (S11 and S21) from the VNA using the Nicolsson Ross Weir (NRW) method to obtain input variables such as relative complex permeability and relative complex permittivity. Following this, the single-layer thickness of the sample was optimized using a genetic algorithm (GA), which can predict the appropriate thickness so that the optimum RL can be obtained. The optimum thickness of the sample was found to be 3.48 mm, which resulted in a much higher RL. The RL was re-measured for verification using a sample with the corresponding optimized thickness, revealing that this optimization is feasibly operational for a radar absorbing material (RAM) design. HIGHLIGHTS Carbon compounds containing graphenic phase derived from coconut shell are functional materials having various unique properties such as superior electrical conductivity, large surface area, and excellent structural flexibility, and microwave absorbtion The single-layer microwave absorber employing carbon compounds has been prepared The layer thickness optimized using a genetic algorithm (GA) can estimate the appropriate design with the maximum reflection loss (RL)


Author(s):  
Antonio Barba‐Juan ◽  
Andrés Mormeneo‐Segarra ◽  
Nuria Vicente ◽  
Juan Carlos Jarque ◽  
Carolina Clausell‐Terol

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. Contreras-Reyes ◽  
D. Díaz ◽  
J. P. Bello-González ◽  
K. Slezak ◽  
B. Potin ◽  
...  

AbstractDehydration of the oceanic subducting slab promotes the formation of magmatic arcs, intra-slab intermediate-depth seismicity, and hydration of the overlying mantle wedge. However, the complex permeability structure of the overriding plate controls the magma and fluid migration and their accumulation at shallower depths. In this regard, mapping the inner structure of the overriding crust and mantle is crucial to understand the magmatic and hydrological processes in subduction zones. We integrate 3-D P-wave, $$V_p/V_s$$ V p / V s , and electrical resistivity tomographic models of the northern Chilean subduction zone to map the magmatic and fluids derived from the subducting oceanic Nazca plate. Results show a continental crust relatively thick (50–65 km) characterized by a lower zone of high $$V_p$$ V p values (7.2–7.6 km/s), which is interpreted as the presence of plutonic rocks. The mantle lithospheric wedge is weakly hydrated ($$V_p/V_s$$ V p / V s = 1.75–1.8) while the forearc continental crust is traversed by regions of reduced electrical resistivity values ($$< 10^2$$ < 10 2 $$\Omega m$$ Ω m ) interpreted as zones of relatively high permeability/fracturing and fluid content. These regions spatially correlate with upper plate trans-lithospheric deformation zones. Ascending melts accumulate preferentially in the back-arc, whereas hydrothermal systems form trenchward of the volcanic arc. The results highlight the complex permeability structure of the upper South American plate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nor Hapishah Abdullah ◽  
Muhammad Syazwan Mustaffa ◽  
Mohd Nizar Hamidon ◽  
Farah Nabilah Shafie ◽  
Ismayadi Ismail ◽  
...  

AbstractA new approach through heat treatment has been attempted by establishing defects by the process of quenching towards electrical and magnetic properties in the nickel zinc ferrite (Ni0.5Zn0.5Fe2O4) sample. The measured property values in permeability and hysteresis characteristic gave their recovery behaviour in which the values, after quenching were recovered after undergoing the annealing. Interestingly, a different trend observed in the permittivity value whereas the value was increased after quenching and subsequently recovered after annealing. The mechanisms which produced the changes is believed to be involved by defects in the form of vacancies, interstitials, microcracks and dislocations created during quenching which gave rise to changes in the values of the complex permeability and permittivity components and hysteresis behaviour.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6292
Author(s):  
Zongqiang Ren ◽  
Hongwei Li ◽  
Wentao Yu

The inductive displacement sensor is widely used in active magnetic bearing (AMB) systems to detect rotor displacement in real time, and the performance of the sensor directly affects the performance of AMB. At present, most theoretical studies on the working principle of inductive displacement sensor are based on a traditional mathematical model, ignoring the influence of the core magnetic resistance and core eddy current, which will lead to a certain error between the theoretical analysis of the sensor output characteristics and the actual situation. In this regard, based on the theory of electromagnetic field and circuit, an improved theoretical model of the inductive sensor was established in this paper by introducing the complex permeability, by which the influence of core eddy current on magnetic field can be taken into account. In order to verify the improved model, an eight-pole radial self-inductive displacement sensor with an air gap of 1 mm was designed. Then the electromagnetic field of the designed sensor was simulated by a finite element software and the GW LCR-6100 measuring instrument was used to measure the changes of the inductance and resistance of the designed sensor core coils with the rotor displacement at 20–100 kHz. The results demonstrated that there is a good linear relationship between the impedance change of the sensor coils and the rotor displacement within the measurement range of −0.4 ~ +0.4 mm. At the same time, compared with the traditional model, the sensitivity of the improved theoretical model is closer to the results from FEM and experiment, and the accuracy of the sensitivity of the improved theoretical model can be approximately doubled, despite there are certain differences with the experimental situation. Therefore, the improved theoretical model considering complex permeability is of great significance for studying the influence of core eddy current on the coil impedance of sensor.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5097
Author(s):  
Jerzy Krupka

A review of measurement methods of the basic electromagnetic parameters of materials at microwave frequencies is presented. Materials under study include dielectrics, semiconductors, conductors, superconductors, and ferrites. Measurement methods of the complex permittivity, the complex permeability tensor, and the complex conductivity and related parameters, such as resistivity, the sheet resistance, and the ferromagnetic linewidth are considered. For dielectrics and ferrites, the knowledge of their complex permittivity and the complex permeability at microwave frequencies is of practical interest. Microwave measurements allow contactless measurements of their resistivity, conductivity, and sheet resistance. These days contactless conductivity measurements have become more and more important, due to the progress in materials technology and the development of new materials intended for the electronic industry such as graphene, GaN, and SiC. Some of these materials, such as GaN and SiC are not measurable with the four-point probe technique, even if they are conducting. Measurement fixtures that are described in this paper include sections of transmission lines, resonance cavities, and dielectric resonators.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2167
Author(s):  
Eun S. Lee ◽  
Byeong Guk Choi

In order to design power converters and wireless power systems using high-frequency magnetic materials, the magnetic characteristics for the inductors and transformers should be specified in detail w.r.t. the operating frequency. For investigating the complex permeability of the magnetic materials by simply test prototypes, the inductor model-based calculation methodologies for the complex permeability are suggested to find the core loss characteristics in this paper. Based on the measured results of the test voltage Ve, current Ie, and phase difference θe, which can be obtained simply by an oscilloscope and a function generator, the real and imaginary permeability can be calculated w.r.t. operating frequency by the suggested calculation methodologies. Such information for the real and imaginary permeability is important to determine the size of the magnetic components and to analyze the core loss. To identify the superiority of the high-frequency magnetic materials, three prototypes for a ferrite core, amorphous core, and nanocrystalline core have been built and verified by experiment. As a result, the ferrite core is superior to the other cores for core loss, and the nanocrystalline core is recommended for compact transformer applications. The proposed calculation for the complex (i.e., real and imaginary) permeability, which has not been revealed in the datasheets, provides a way to easily determine the parameters useful for industrial electronics engineers.


2021 ◽  
Vol 01 ◽  
Author(s):  
Navdeep Singh ◽  
Gagan Deep Aul

: Radar is a delicate detection device and since its evolution different techniques for reducing electromagnetic reflections have been discovered. This paper provide concise review on fundamentals of absorption which reduces radar cross section from stealth target with which radar cross section has effects to survivability and mission capability. The reduction of radar cross section depend on dielectric and magnetic properties of material. The first section reviews the Radar Absorbing Material (RAM) in order to provide a background on fundamentals, various stealth techniques for absorption and its properties at microwave frequencies. The second section reviews the Multi-Walled Carbon Nanotubes and its different composites by encapsulation of other metals, polymers or epoxies into it and its microwave absorption properties were studies at microwave frequencies. Multi-Walled Carbon Nanotubes based composites for microwave absorption are reviewed on the basis of various factors; material composition, reflection loss performance, thickness, complex permittivity, complex permeability, dielectric tangent loss, magnetic tangent loss, bandwidth, and frequency band.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2332
Author(s):  
Ahmad Mamoun Khamis ◽  
Zulkifly Abbas ◽  
Raba’ah Syahidah Azis ◽  
Ebenezer Ekow Mensah ◽  
Ibrahim Abubakar Alhaji

The purpose of this study was to improve the dielectric, magnetic, and thermal properties of polytetrafluoroethylene (PTFE) composites using recycled Fe2O3 (rFe2O3) nanofiller. Hematite (Fe2O3) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of high-energy ball milling. Different compositions (5–25 wt %) of rFe2O3 nanoparticles were incorporated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to fabricate rFe2O3–PTFE nanocomposites. The microstructure properties of rFe2O3 nanoparticles and the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using a dilatometer apparatus. The complex permittivity and permeability were measured using rectangular waveguide connected to vector network analyzer (VNA) in the frequency range 8.2–12.4 GHz. The CTE of PTFE matrix decreased from 65.28×10−6/°C to 39.84×10−6/°C when the filler loading increased to 25 wt %. The real (ε′) and imaginary (ε″) parts of permittivity increased with the rFe2O3 loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased from 5 to 25 wt %. A maximum complex permeability of 1.1−j0.07 was also achieved by 25 wt % nanocomposite at 10 GHz.


Sign in / Sign up

Export Citation Format

Share Document