drinking in the dark
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 26)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 20 (4) ◽  
pp. 933-943
Author(s):  
James C. Nelson ◽  
Eva Greengrove ◽  
Kala N. Nwachukwu ◽  
Isabella R. Grifasi ◽  
S. Alex Marshall

2021 ◽  
Author(s):  
John C. Crabbe ◽  
Wyatt R. Hack ◽  
Angela R. Ozburn ◽  
Antonia M. Savarese ◽  
Pamela Metten

2021 ◽  
Vol 14 ◽  
Author(s):  
Kate Beecher ◽  
Joshua Wang ◽  
Angela Jacques ◽  
Nicholas Chaaya ◽  
Fatemeh Chehrehasa ◽  
...  

The overconsumption of sugar-sweetened food and beverages underpins the current rise in obesity rates. Sugar overconsumption induces maladaptive neuroplasticity to decrease dietary control. Although serotonin and glutamate co-localisation has been implicated in reward processing, it is still unknown how chronic sucrose consumption changes this transmission in regions associated with executive control over feeding—such as the prefrontal cortex (PFC) and dentate gyrus (DG) of the hippocampus. To address this, a total of 16 C57Bl6 mice received either 5% w/v sucrose or water as a control for 12 weeks using the Drinking-In-The-Dark paradigm (n = 8 mice per group). We then examined the effects of chronic sucrose consumption on the immunological distribution of serotonin (5-HT), vesicular glutamate transporter 3 (VGLUT3) and 5-HT+/VGLUT3+ co-localised axonal varicosities. Sucrose consumption over 12 weeks decreased the number of 5-HT–/VGLUT3+ and 5-HT+/VGLUT3+ varicosities within the PFC and DG. The number of 5-HT+/VGLUT3– varicosities remained unchanged within the PFC but decreased in the DG following sucrose consumption. Given that serotonin mediates DG neurogenesis through microglial migration, the number of microglia within the DG was also assessed in both experimental groups. Sucrose consumption decreased the number of DG microglia. Although the DG and PFC are associated with executive control over rewarding activities and emotional memory formation, we did not detect a subsequent change in DG neurogenesis or anxiety-like behaviour or depressive-like behaviour. Overall, these findings suggest that the chronic consumption of sugar alters serotonergic neuroplasticity within neural circuits responsible for feeding control. Although these alterations alone were not sufficient to induce changes in neurogenesis or behaviour, it is proposed that the sucrose consumption may predispose individuals to these cognitive deficits which ultimately promote further sugar intake.


Author(s):  
Nigel C. Dao ◽  
Dakota F. Brockway ◽  
Malini Suresh Nair ◽  
Avery R. Sicher ◽  
Nicole A. Crowley

AbstractSomatostatin (SST) neurons have been implicated in a variety of neuropsychiatric disorders such as depression and anxiety, but their role in substance use disorders, including alcohol use disorder (AUD), is not fully characterized. Here, we found that repeated cycles of alcohol binge drinking via the Drinking-in-the-Dark (DID) model led to hypoactivity of SST neurons in the prelimbic (PL) cortex by diminishing their action potential firing capacity and excitatory/inhibitory transmission dynamic. We examined their role in regulating alcohol consumption via bidirectional chemogenetic manipulation. Both hM3Dq-induced excitation and KORD-induced silencing of PL SST neurons reduced alcohol binge drinking in males and females, with no effect on sucrose consumption. Alcohol binge drinking disinhibited pyramidal neurons by augmenting SST neurons-mediated GABA release and synaptic strength onto other GABAergic populations and reducing spontaneous inhibitory transmission onto pyramidal neurons. Pyramidal neurons additionally displayed increased intrinsic excitability. Direct inhibition of PL pyramidal neurons via hM4Di was sufficient to reduce alcohol binge drinking. Together these data revealed an SST-mediated microcircuit in the PL that modulates the inhibitory dynamics of pyramidal neurons, a major source of output to subcortical targets to drive reward-seeking behaviors and emotional response.


Alcohol ◽  
2021 ◽  
Author(s):  
Meera Rath ◽  
Jasmin Tawfic ◽  
Aziza Abrorkhujaeva ◽  
Sam Sowell ◽  
Sara Wu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shoupeng Wei ◽  
Sarah Hertle ◽  
Rainer Spanagel ◽  
Ainhoa Bilbao

AbstractThe concept of “sugar addiction” is gaining increasing attention in both the lay media and scientific literature. However, the concept of sugar addiction is controversial and only a few studies to date have attempted to determine the “addictive” properties of sugar using rigorous scientific criteria. Here we set out to systematically test the addictive properties of sugar in male and female mice using established paradigms and models from the drug addiction field. Male and female C57BL/6N (8–10 weeks old) were evaluated in 4 experimental procedures to study the addictive properties of sugar: (i) a drinking in the dark (DID) procedure to model sugar binging; (ii) a long-term free choice home cage drinking procedure measuring the sugar deprivation effect (SDE) following an abstinence phase; (iii) a long-term operant sugar self-administration with persistence, motivation and compulsivity measures and (iv) intracranial self-stimulation (ICSS). Female mice were more vulnerable to the addictive properties of sugar than male mice, showing higher binge and long-term, excessive drinking, a more pronounced relapse-like drinking following deprivation, and higher persistence and motivation for sugar. No sex differences were seen in a compulsivity test or reward sensitivity measured using ICSS following extended sugar consumption. This study demonstrates the occurrence of an addictive-like phenotype for sugar in male and female mice, similar to drugs of abuse, and suggests sex-dependent differences in the development of sugar addiction.


2021 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Bryan E. Jensen ◽  
Kayla G. Townsley ◽  
Kolter B. Grigsby ◽  
Pamela Metten ◽  
Meher Chand ◽  
...  

Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay. Along with their genetically heterogenous progenitor line, Hs/Npt, we tested these mice on: DID and drinking in the light (DIL); temporal drinking patterns; ethanol sensitivity, through loss of righting reflex (LORR); and operant self-administration, including fixed ratio (FR1), fixed ratio 3:1 (FR3), extinction/reinstatement, and progressive ratio (PR). All mice consumed more ethanol during the dark than the light and both HDID lines consumed more ethanol than Hs/Npt during DIL and DID. In the dark, we found that the HDID lines achieved high blood alcohol levels early into a drinking session, suggesting that they exhibit front loading like drinking behavior in the absence of the chronicity usually required for such behavior. Surprisingly, HDID-1 (female and male) and HDID-2 (male) mice were more sensitive to the intoxicating effects of ethanol during the dark (as determined by LORR), while Hs/Npt (female and male) and HDID-2 (female) mice appeared less sensitive. We observed lower HDID-1 ethanol intake compared to either HDID-2 or Hs/Npt during operant ethanol self-administration. There were no genotype differences for either progressive ratio responding, or cue-induced ethanol reinstatement, though the latter is complicated by a lack of extinguished responding behavior. Taken together, these findings suggest that genes affecting one AUD-related behavior do not necessarily affect other AUD-related behaviors. Moreover, these findings highlight that alcohol-related behaviors can also differ between lines selectively bred for the same phenotype, and even between sexes within those same line.


Alcohol ◽  
2021 ◽  
Author(s):  
Antonia M. Savarese ◽  
Angela R. Ozburn ◽  
Amanda M. Barkley-Levenson ◽  
Pamela Metten ◽  
John C. Crabbe

2021 ◽  
Vol 16 ◽  
pp. 263310552110098
Author(s):  
Cassandre Coles ◽  
Amy W Lasek

Alcohol use disorder is associated with pathophysiological changes in the dopaminergic system. Orthodenticle homeobox 2 (OTX2) is a transcription factor important for the development of dopaminergic neurons residing in the ventral tegmental area (VTA), a critical region of the brain involved in drug reinforcement. Previous studies have demonstrated that ethanol exposure during embryonic development reduces Otx2 mRNA levels in the central nervous system. We hypothesized that levels of OTX2 would be altered by binge-like ethanol consumption in adult animals. To test this, Otx2 mRNA and protein levels in the mouse VTA were measured by quantitative real-time PCR and western blotting, respectively, after mice drank ethanol for 4 days in a procedure that elicits binge levels of ethanol consumption (drinking in the dark). Expression of known and putative OTX2 transcriptional target genes ( Sema3c, Wnt1, and Mdk) were also measured in the VTA after ethanol drinking. Otx2 mRNA and protein levels were elevated in the VTA 24 hours after the fourth drinking session and there was a corresponding increase in the expression of Mdk transcript. Interestingly, Wnt1 transcript was elevated in the VTA immediately after the fourth drinking session but returned to control levels 24 hours later. We next investigated if viral-mediated reduction of Otx2 in the mouse VTA would alter ethanol or sucrose intake. Lentiviral vectors expressing a shRNA targeting Otx2 or a control shRNA were injected into the VTA and mice were tested in the drinking in the dark protocol for ethanol and sucrose drinking. Reducing levels of OTX2 in the VTA did not alter ethanol or sucrose consumption. One limitation is that the extent of OTX2 reduction may not have been sufficient. Although OTX2 in the VTA may not play a role in binge-like drinking in adult mice, OTX2 could contribute to ethanol-induced transcriptional changes in this region.


Sign in / Sign up

Export Citation Format

Share Document