scholarly journals Characterization of Brassica S -haplotypes lacking S -locus glycoprotein 1

FEBS Letters ◽  
2000 ◽  
Vol 482 (1-2) ◽  
pp. 102-108 ◽  
Author(s):  
Tohru Suzuki ◽  
Makoto Kusaba ◽  
Masanori Matsushita ◽  
Keiichi Okazaki ◽  
Takeshi Nishio
Keyword(s):  
S Locus ◽  
2013 ◽  
Vol 49 (No. 4) ◽  
pp. 157-163 ◽  
Author(s):  
X. Zhang ◽  
C. Ma ◽  
D. Yin ◽  
W. Zhu ◽  
C. Gao ◽  
...  

The most important Brassica species, B. rapa, is naturally self-incompatible. Self-compatible mutants would be useful for dissecting the molecular mechanism of self-incompatibility (SI), a process that promotes outcrossing by recognizing and refusing self-pollens. The S haplotype in a new self-compatible B. rapa cultivar, Dahuangyoucai, was characterized for the first time in this study. Sequence analysis of the S-locus genes, SLG (S-locus glycoprotein), SRK (S-locus receptor kinase) and SCR (S-locus cysteine-rich protein) revealed that Dahuangyoucai contained S haplotype highly similar to S-f2, a non-functional class I S haplotype identified in another self-compatible B. rapa cultivar, Yellow Sarson. Mutations of MLPK (M-locus protein kinase) and non-transcription of the male determinant, SCR, were observed in this cultivar, which is similar to the situation reported in Yellow Sarson. With respect to the female determinant, SRK, no transcript was detected in Yellow Sarson but two fragments were detected in Dahuangyoucai. One fragment was highly similar to SRK-f2, but the other fragment was different from the signal factors previously identified in the SI reaction. The results suggest that Dahuangyoucai and Yellow Sarson have the same origin and a similar mechanism of self-compatibility, but diverge after mutations in SRK, SCR and MLPK. Further studying the self-compatibility of Dahuangyoucai might identify novel factors involved in the SI signalling cascade and provide new insights into the mechanisms of SI in Brassicaceae.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 391-400 ◽  
Author(s):  
Go Suzuki ◽  
Naoko Kai ◽  
Tamaki Hirose ◽  
Kiichi Fukui ◽  
Takeshi Nishio ◽  
...  

Abstract In Brassica, two self-incompatibility genes, encoding SLG (S locus glycoprotein) and SRK (S-receptor kinase), are located at the S locus and expressed in the stigma. Recent molecular analysis has revealed that the S locus is highly polymorphic and contains several genes, i.e., SLG, SRK, the as-yet-unidentified pollen S gene(s), and other linked genes. In the present study, we searched for expressed sequences in a 76-kb SLG/SRK region of the S9 haplotype of Brassica campestris (syn. rapa) and identified 10 genes in addition to the four previously identified (SLG9, SRK9, SAE1, and SLL2) in this haplotype. This gene density (1 gene/5.4 kb) suggests that the S locus is embedded in a gene-rich region of the genome. The average G + C content in this region is 32.6%. An En/Spm-type transposon-like element was found downstream of SLG9. Among the genes we identified that had not previously been found to be linked to the S locus were genes encoding a small cysteine-rich protein, a J-domain protein, and an antisilencing protein (ASF1) homologue. The small cysteine-rich protein was similar to a pollen coat protein, named PCP-A1, which had previously been shown to bind SLG.


Genetics ◽  
1991 ◽  
Vol 127 (1) ◽  
pp. 221-228 ◽  
Author(s):  
D C Boyes ◽  
C H Chen ◽  
T Tantikanjana ◽  
J J Esch ◽  
J B Nasrallah

Abstract Self-incompatibility in Brassica oleracea is controlled by the highly polymorphic S locus. Isolation and subsequent characterization of the S-locus-glycoprotein (SLG) gene, which encodes the S-locus-specific glycoprotein (SLSG), has revealed the presence of a self-incompatibility multigene family. One of these S-locus-related genes, SLR1, has been shown to be expressed. In this study we present the isolation and preliminary characterization of a second expressed S-locus-related sequence, SLR2. Through restriction fragment length polymorphism (RFLP) linkage analysis we demonstrate that the SLR1 and SLR2 loci reside approximately 18.5 map units apart in one linkage group that segregates independently of the S-locus. The identification of a second SLR gene expressed in stigmas suggests that loci unlinked to the S-locus may play a role in the self-incompatibility response, or in pollination in general.


1996 ◽  
Vol 8 (12) ◽  
pp. 2369-2380 ◽  
Author(s):  
K Yu ◽  
U Schafer ◽  
T L Glavin ◽  
D R Goring ◽  
S J Rothstein

2001 ◽  
Vol 13 (3) ◽  
pp. 627-643 ◽  
Author(s):  
Makoto Kusaba ◽  
Kathleen Dwyer ◽  
Jennifer Hendershot ◽  
Julia Vrebalov ◽  
June B. Nasrallah ◽  
...  
Keyword(s):  

Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1587-1597 ◽  
Author(s):  
Katsunori Hatakeyama ◽  
Takeshi Takasaki ◽  
Masao Watanabe ◽  
Kokichi Hinata

Abstract In Brassica species that exhibit self-incompatibility, two genes, SLG and SRK, at the S locus are involved in the recognition reaction with self and non-self pollen. From a pollen-recessive S29 haplotype of Brassica rapa, both cDNA and genomic DNA clones for these two genes were isolated and characterized. The nucleotide sequence for the S domain of SRK29 showed a high degree of similarity with that of SLG29, and they belong to Class II type. RNA gel blot analysis showed that the transcript of SLG29 consisted of the first and second exons, and no other transcript containing any part of the intron sequence was detected. Because no transmembrane domain was encoded by the second exon of SLG29, SLG29 was designated a secreted type glycoprotein. SLGs of two other pollen-recessive haplotypes, S40 and S44, of B. rapa also had a similar structure to that of SLG29. Previously, SLG2 from a pollen-recessive haplotype, S2, of Brassica oleracea was found to produce two different transcripts, one for the secreted type glycoprotein and the other for a putative membrane-anchored form of SLG. Therefore, the nature of these SLGs from pollen-recessive haplotypes of B. rapa is different from that of SLG2 of B. oleracea.


Genetics ◽  
2008 ◽  
Vol 178 (4) ◽  
pp. 2055-2067 ◽  
Author(s):  
Jeremiah W. Busch ◽  
Julia Sharma ◽  
Daniel J. Schoen

2005 ◽  
Vol 25 (4) ◽  
pp. 403-411 ◽  
Author(s):  
C. L. Bassett ◽  
M. L. Nickerson ◽  
R. E. Farrell ◽  
T. S. Artlip ◽  
A. El Ghaouth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document