scholarly journals Molecular Characterization of S Locus Genes, SLG and SRK, in a Pollen-Recessive Self-Incompatibility Haplotype of Brassica rapa L

Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1587-1597 ◽  
Author(s):  
Katsunori Hatakeyama ◽  
Takeshi Takasaki ◽  
Masao Watanabe ◽  
Kokichi Hinata

Abstract In Brassica species that exhibit self-incompatibility, two genes, SLG and SRK, at the S locus are involved in the recognition reaction with self and non-self pollen. From a pollen-recessive S29 haplotype of Brassica rapa, both cDNA and genomic DNA clones for these two genes were isolated and characterized. The nucleotide sequence for the S domain of SRK29 showed a high degree of similarity with that of SLG29, and they belong to Class II type. RNA gel blot analysis showed that the transcript of SLG29 consisted of the first and second exons, and no other transcript containing any part of the intron sequence was detected. Because no transmembrane domain was encoded by the second exon of SLG29, SLG29 was designated a secreted type glycoprotein. SLGs of two other pollen-recessive haplotypes, S40 and S44, of B. rapa also had a similar structure to that of SLG29. Previously, SLG2 from a pollen-recessive haplotype, S2, of Brassica oleracea was found to produce two different transcripts, one for the secreted type glycoprotein and the other for a putative membrane-anchored form of SLG. Therefore, the nature of these SLGs from pollen-recessive haplotypes of B. rapa is different from that of SLG2 of B. oleracea.

Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 969-972 ◽  
Author(s):  
Kathleen G. Dwyer ◽  
Anna Chao ◽  
Betty Cheng ◽  
Che-Hong Chen ◽  
June B. Nasrallah

The pollen–stigma interaction of self-incompatibility in Brassica species is controlled by a single genetic locus, the S locus. This locus encodes the S locus specific glycoproteins of the stigma. Hybridization of restriction enzyme digested genomic DNA isolated from homozygous strains of Brassica with cDNA probes encoding these glycoproteins yields a pattern of multiple fragments of varying size and intensity. The presence of S sequences as multiple related copies in the Brassica oleracea genome has been verified by the cloning of several different genomic regions containing S homology. Probes capable of distinguishing between S gene copies have been obtained and have demonstrated that two such copies are expressed. Characterization of additional probes specific for S gene copies will permit the study of the expression of the other copies, and the analysis of the genomic organization of the self-incompatibility multigene family.Key words: self-incompatibility, Brassica, cDNA probes.


2001 ◽  
Vol 13 (3) ◽  
pp. 627-643 ◽  
Author(s):  
Makoto Kusaba ◽  
Kathleen Dwyer ◽  
Jennifer Hendershot ◽  
Julia Vrebalov ◽  
June B. Nasrallah ◽  
...  
Keyword(s):  

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Sandra Nilsson ◽  
Kirsten Moll ◽  
Davide Angeletti ◽  
Letusa Albrecht ◽  
Inari Kursula ◽  
...  

Studies on Pf332, a major Plasmodium falciparum blood-stage antigen, have largely been hampered by the cross-reactive nature of antibodies generated against the molecule due to its high content of repeats, which are present in other malaria antigens. We previously reported the identification of a conserved domain in Pf332 with a high degree of similarity to the Duffy-binding-like (DBL) domains of the erythrocyte-binding-like (EBL) family. We here describe that antibodies towards Pf332-DBL are induced after repeated exposure to P. falciparum and that they are acquired early in life in areas of intense malaria transmission. Furthermore, a homology model of Pf332-DBL was found to be similar to the structure of the EBL-DBLs. Despite their similarities, antibodies towards Pf332-DBL did not display any cross-reactivity with EBL-proteins as demonstrated by immunofluorescence microscopy, Western blotting, and peptide microarray. Thus the DBL domain is an attractive region to use in further studies on the giant Pf332 molecule.


2013 ◽  
Vol 49 (No. 4) ◽  
pp. 157-163 ◽  
Author(s):  
X. Zhang ◽  
C. Ma ◽  
D. Yin ◽  
W. Zhu ◽  
C. Gao ◽  
...  

The most important Brassica species, B. rapa, is naturally self-incompatible. Self-compatible mutants would be useful for dissecting the molecular mechanism of self-incompatibility (SI), a process that promotes outcrossing by recognizing and refusing self-pollens. The S haplotype in a new self-compatible B. rapa cultivar, Dahuangyoucai, was characterized for the first time in this study. Sequence analysis of the S-locus genes, SLG (S-locus glycoprotein), SRK (S-locus receptor kinase) and SCR (S-locus cysteine-rich protein) revealed that Dahuangyoucai contained S haplotype highly similar to S-f2, a non-functional class I S haplotype identified in another self-compatible B. rapa cultivar, Yellow Sarson. Mutations of MLPK (M-locus protein kinase) and non-transcription of the male determinant, SCR, were observed in this cultivar, which is similar to the situation reported in Yellow Sarson. With respect to the female determinant, SRK, no transcript was detected in Yellow Sarson but two fragments were detected in Dahuangyoucai. One fragment was highly similar to SRK-f2, but the other fragment was different from the signal factors previously identified in the SI reaction. The results suggest that Dahuangyoucai and Yellow Sarson have the same origin and a similar mechanism of self-compatibility, but diverge after mutations in SRK, SCR and MLPK. Further studying the self-compatibility of Dahuangyoucai might identify novel factors involved in the SI signalling cascade and provide new insights into the mechanisms of SI in Brassicaceae.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Carlos A. López-Morales ◽  
Mariana P. Miranda-Hernández ◽  
L. Carmina Juárez-Bayardo ◽  
Nancy D. Ramírez-Ibáñez ◽  
Alexis J. Romero-Díaz ◽  
...  

According to the World Health Organization, the incidence of malignant neoplasms and endocrine, blood, and immune disorders will increase in the upcoming decades along with the demand of affordable treatments. In response to this need, the development of biosimilar drugs is increasing worldwide. The approval of biosimilars relies on the compliance with international guidelines, starting with the demonstration of similarity in their physicochemical and functional properties against the reference product. Subsequent clinical studies are performed to demonstrate similar pharmacological behavior and to diminish the uncertainty related to their safety and efficacy. Herein we present a comparability exercise between a biosimilar trastuzumab and its reference product, by using a hierarchical strategy with an orthogonal approach, to assess the physicochemical and biological attributes with potential impact on its pharmacokinetics, pharmacodynamics, and immunogenicity. Our results showed that the high degree of similarity in the physicochemical attributes of the biosimilar trastuzumab with respect to the reference product resulted in comparable biological activity, demonstrating that a controlled process is able to provide consistently the expected product. These results also constitute the basis for the design of subsequent delimited pharmacological studies, as they diminish the uncertainty of exhibiting different profiles.


2008 ◽  
Vol 76 (12) ◽  
pp. 5655-5667 ◽  
Author(s):  
Frédéric Poly ◽  
Timothy D. Read ◽  
Yu-Han Chen ◽  
Mario A. Monteiro ◽  
Oralak Serichantalergs ◽  
...  

ABSTRACT The development of vaccines against Campylobacter jejuni would be facilitated by the ability to perform phase II challenge studies. However, molecular mimicry of the lipooligosaccharide (LOS) of most C. jejuni strains with human gangliosides presents safety concerns about the development of Guillain-Barré syndrome. Clinical isolates of C. jejuni that appeared to lack genes for the synthesis of ganglioside mimics were identified by DNA probe analyses. Two clinical isolates from Southeast Asia (strains BH-01-0142 and CG8421) were determined to express the LOS type containing N-acetyl quinovosamine. No ganglioside structures were observed to be present in the LOSs of these strains, and pyrosequence analyses of the genomes of both strains confirmed the absence of genes involved in ganglioside mimicry. The capsule polysaccharide (CPS) of BH-01-0142 was determined to be composed of galactose (Gal), 6-deoxy-ido-heptose, and, in smaller amounts, d-glycero-d-ido-heptose, and the CPS of CG8421 was observed to contain Gal, 6-deoxy-altro-heptose, N-acetyl-glucosamine, and minor amounts of 6-deoxy-3-O-Me-altro-heptose. Both CPSs were shown to carry O-methyl-phosphoramidate. The two genomes contained strain-specific zones, some of which could be traced to a plasmid origin, and both contained a large chromosomal insertion related to the CJEI3 element of C. jejuni RM1221. The genomes of both strains shared a high degree of similarity to each other and, with the exception of the capsule locus of CG8421, to the type strain of the HS3 serotype, TGH9011.


Sign in / Sign up

Export Citation Format

Share Document