scholarly journals The plasmid F OmpP protease, a homologue of OmpT, as a potential obstacle toE. coli-based protein production

FEBS Letters ◽  
1999 ◽  
Vol 461 (1-2) ◽  
pp. 6-8 ◽  
Author(s):  
Ei-ichi Matsuo ◽  
Gen-ichi Sampei ◽  
Kiyoshi Mizobuchi ◽  
Koreaki Ito
Keyword(s):  
1995 ◽  
Vol 74 (02) ◽  
pp. 686-692 ◽  
Author(s):  
René W L M Niessen ◽  
Birgit A Pfaffendorf ◽  
Augueste Sturk ◽  
Roy J Lamping ◽  
Marianne C L Schaap ◽  
...  

SummaryAs a basis for regulatory studies on the influence of hormones on (anti)coagulant protein production by hepatocytes, we examined the amounts of the plasma proteins antithrombin III (AT III), protein C, protein S, factor II, factor X, fibrinogen, and prealbumin produced by the hepatoma cell line HepG2, into the culture medium, in the absence and presence of insulin, β-estradiol, dexamethasone and thyroid hormone. Without hormones these cells produced large amounts of fibrinogen (2,452 ± 501 ng/mg cell protein), AT III (447 ± 16 ng/mg cell protein) and factor II (464 ± 31 ng/mg cell protein) and only small amounts of protein C (50 ± 7 ng/mg cell protein) and factor X (55 ± 5 ng/mg cell protein). Thyroid hormone had a slight but significant effect on the enrichment in the culture medium of the anticoagulant protein AT III (1.34-fold) but not on protein C (0.96-fold) and protein S (0.91-fold). This hormone also significantly increased the amounts of the coagulant proteins factor II (1.28-fold), factor X (1.45-fold) and fibrinogen (2.17-fold). Insulin had an overall stimulating effect on the amounts of all the proteins that were investigated. Neither dexamethasone nor ß-estradiol administration did substantially change the amounts of these proteins.We conclude that the HepG2 cell is a useful tool to study the hormonal regulation of the production of (anti)coagulant proteins. We studied the overall process of protein production, i.e., the amounts of proteins produced into the culture medium. Detailed studies have to be performed to establish the specific hormonal effects on the underlying processes, e.g., transcription, translation, cellular processing and transport, and secretion.


2014 ◽  
Vol 3 (3) ◽  
pp. 244-251 ◽  
Author(s):  
Helena Culleton ◽  
Ourdia Bouzid ◽  
Vincent McKie ◽  
Ronald Vries

2021 ◽  
Vol 7 (3) ◽  
pp. 179
Author(s):  
Kai P. Hussnaetter ◽  
Magnus Philipp ◽  
Kira Müntjes ◽  
Michael Feldbrügge ◽  
Kerstin Schipper

Heterologous protein production is a highly demanded biotechnological process. Secretion of the product to the culture broth is advantageous because it drastically reduces downstream processing costs. We exploit unconventional secretion for heterologous protein expression in the fungal model microorganism Ustilago maydis. Proteins of interest are fused to carrier chitinase Cts1 for export via the fragmentation zone of dividing yeast cells in a lock-type mechanism. The kinase Don3 is essential for functional assembly of the fragmentation zone and hence, for release of Cts1-fusion proteins. Here, we are first to develop regulatory systems for unconventional protein secretion using Don3 as a gatekeeper to control when export occurs. This enables uncoupling the accumulation of biomass and protein synthesis of a product of choice from its export. Regulation was successfully established at two different levels using transcriptional and post-translational induction strategies. As a proof-of-principle, we applied autoinduction based on transcriptional don3 regulation for the production and secretion of functional anti-Gfp nanobodies. The presented developments comprise tailored solutions for differentially prized products and thus constitute another important step towards a competitive protein production platform.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 140
Author(s):  
Abdellatif Bouazzaoui ◽  
Ahmed A. H. Abdellatif ◽  
Faisal A. Al-Allaf ◽  
Neda M. Bogari ◽  
Saied Al-Dehlawi ◽  
...  

The current COVID-19 pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has raised significant economic, social, and psychological concerns. The rapid spread of the virus, coupled with the absence of vaccines and antiviral treatments for SARS-CoV-2, has galvanized a major global endeavor to develop effective vaccines. Within a matter of just a few months of the initial outbreak, research teams worldwide, adopting a range of different strategies, embarked on a quest to develop effective vaccine that could be effectively used to suppress this virulent pathogen. In this review, we describe conventional approaches to vaccine development, including strategies employing proteins, peptides, and attenuated or inactivated pathogens in combination with adjuvants (including genetic adjuvants). We also present details of the novel strategies that were adopted by different research groups to successfully transfer recombinantly expressed antigens while using viral vectors (adenoviral and retroviral) and non-viral delivery systems, and how recently developed methods have been applied in order to produce vaccines that are based on mRNA, self-amplifying RNA (saRNA), and trans-amplifying RNA (taRNA). Moreover, we discuss the methods that are being used to enhance mRNA stability and protein production, the advantages and disadvantages of different methods, and the challenges that are encountered during the development of effective vaccines.


Sign in / Sign up

Export Citation Format

Share Document