heterologous protein expression
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 61)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Vol 30 (1) ◽  
pp. 777-797
Author(s):  
Okojie Eseoghene Lorrine ◽  
Raja Noor Zaliha Raja Abd. Rahman ◽  
Joo Shun Tan ◽  
Raja Farhana Raja Khairuddin ◽  
Abu Bakar Salleh ◽  
...  

Meyerozyma guilliermondii strain SO, a newly isolated yeast species from spoilt orange, has been used as a host to express the recombinant proteins using methylotrophic yeast promoters. However, as a novel yeast expression system, the vacuolar proteases of this yeast have not been determined, which may have contributed to the low level of heterologous protein secretions. Thus, this study aimed to determine intra- and extracellular proteolytic activity and identify the putative vacuolar proteases using bioinformatics techniques. A clear zone was observed from the nutrient agar skimmed milk screening plate. Proteolytic activity of 117.30 U/ml and 75 U/ml were obtained after 72 h of cultivation for both extracellular and intracellular proteins, respectively. Next, the Hidden Markov model (HMM) was used to detect the presence of the vacuolar proteases (PEP4 and PRB1) from the strain SO proteome. Aspartyl protease (PEP4) with 97.55% identity to Meyerozyma sp. JA9 and a serine protease (PRB1) with 70.91% identity to Candida albicans were revealed. The homology with other yeast vacuolar proteases was confirmed via evolutionary analysis. PROSPER tool prediction of cleavage sites postulated that PEP4 and PRB1 might have caused proteolysis of heterologous proteins in strain SO. In conclusion, two putative vacuolar proteases (PEP4 and PRB1) were successfully identified in strain SO. Further characterization can be done to understand their specific properties, and their effects on heterologous protein expression can be conducted via genome editing.


Author(s):  
Soonkyu Hwang ◽  
Yongjae Lee ◽  
Ji Hun Kim ◽  
Gahyeon Kim ◽  
Hyeseong Kim ◽  
...  

Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6357
Author(s):  
Adéla Tiffner ◽  
Valentina Hopl ◽  
Romana Schober ◽  
Matthias Sallinger ◽  
Herwig Grabmayr ◽  
...  

The interplay of SK3, a Ca2+ sensitive K+ ion channel, with Orai1, a Ca2+ ion channel, has been reported to increase cytosolic Ca2+ levels, thereby triggering proliferation of breast and colon cancer cells, although a molecular mechanism has remained elusive to date. We show in the current study, via heterologous protein expression, that Orai1 can enhance SK3 K+ currents, in addition to constitutively bound calmodulin (CaM). At low cytosolic Ca2+ levels that decrease SK3 K+ permeation, co-expressed Orai1 potentiates SK3 currents. This positive feedback mechanism of SK3 and Orai1 is enabled by their close co-localization. Remarkably, we discovered that loss of SK3 channel activity due to overexpressed CaM mutants could be restored by Orai1, likely via its interplay with the SK3–CaM binding site. Mapping for interaction sites within Orai1, we identified that the cytosolic strands and pore residues are critical for a functional communication with SK3. Moreover, STIM1 has a bimodal role in SK3–Orai1 regulation. Under physiological ionic conditions, STIM1 is able to impede SK3–Orai1 interplay by significantly decreasing their co-localization. Forced STIM1–Orai1 activity and associated Ca2+ influx promote SK3 K+ currents. The dynamic regulation of Orai1 to boost endogenous SK3 channels was also determined in the human prostate cancer cell line LNCaP.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hyunjun Ko ◽  
Minsik Kang ◽  
Mi-Jin Kim ◽  
Jiyeon Yi ◽  
Jin Kang ◽  
...  

Abstract Background Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. Results A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. Conclusions The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Zou ◽  
Sha Li ◽  
Nan Li ◽  
Shi-Long Ruan ◽  
Jing Chen ◽  
...  

Escherichia coli has been developed as the most common host for recombinant protein expression. Unfortunately, there are still some proteins that are resistant to high levels of heterologous soluble expression in E. coli. Protein and peptide fusion tags are one of the most important methods for increasing target protein expression and seem to influence the expression efficiency and solubility as well. In this study, we identify a short 15-residue enhancing solubility peptide, the PCDS (protocatechuate 3,4-dioxygenase solubility) tag, which enhances heterologous protein expression in E. coli. This PCDS tag is a 45-bp long sequence encoding a peptide tag involved in the soluble expression of protocatechuate 3,4-dioxygenase, encoded by the pcaHG98 genes of Pseudomonas putida NCIMB 9866. The 45-bp sequence was also beneficial for pcaHG98 gene amplification. This tag was shown to be necessary for the heterologous soluble expression of PcaHG98 in E. coli. Purified His6-PcaHG98e04-PCDS exhibited an activity of 205.63±14.23U/mg against protocatechuate as a substrate, and this activity was not affected by a PCDS tag. This PCDS tag has been fused to the mammalian yellow fluorescent protein (YFP) to construct YFP-PCDS without its termination codons and YFPt-PCDS with. The total protein expressions of YFP-PCDS and YFPt-PCDS were significantly amplified up to 1.6-fold and 2-fold, respectively, compared to YFP alone. Accordingly, His6-YFP-PCDS and His6-YFPt-PCDS had 1.6-fold and 3-fold higher soluble protein yields, respectively, than His6-YFP expressed under the same conditions. His6-YFP, His6-YFP-PCDS, and His6-YFPt-PCDS also showed consistent fluorescence emission spectra, with a peak at 530nm over a scanning range from 400 to 700nm. These results indicated that the use of the PCDS tag is an effective way to improve heterologous protein expression in E. coli.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12497
Author(s):  
Fei Shang ◽  
Hui Wang ◽  
Dan Zhang ◽  
Wenhui Wang ◽  
Jiangliu Yu ◽  
...  

Background The pET expression system based on T7 promoter which is induced by isopropyl-β-D-1-thiogalactopyranoside (IPTG) is by far the most commonly used system for production of heterogeneous proteins in Escherichia coli. However, this system was limited by obvious drawbacks including the host toxicity and metabolic burden imposed by the presence of IPTG. Methods In this study, we incorporated the autoinducer-2 (AI-2) quorum sensing system to realize autoinduction of the pET expression system. The autoinduction expression vector pXWZ1 was constructed by inserting the lsr promoter regions into the pET28a(+) vector. The expression efficiency of the reporter genes gfpuv and lacZ by the pXWZ1 and pET28a(+) vectors were compared. Results The results showed that the expression levels of the both report genes in the cells transformed with pXWZ1 without any addition of exogenous inducer were higher than that transformed with pET28a(+) vectors by the induction of IPTG. Conclusion This new auto-induction system will exclude the limitations of the IPTG induction including toxic to host and increasing formation of inclusion body and will become a more economical and convenient tool for recombinant protein expression.


2021 ◽  
Vol 59 ◽  
pp. 102429
Author(s):  
Edoardo Cutolo ◽  
Matteo Tosoni ◽  
Simone Barera ◽  
Luis Herrera-Estrella ◽  
Luca Dall'Osto ◽  
...  

2021 ◽  
pp. 167321
Author(s):  
Gloria Gamiz-Arco ◽  
Valeria A. Risso ◽  
Eric A. Gaucher ◽  
Jose A. Gavira ◽  
Athi N. Naganathan ◽  
...  

2021 ◽  
Vol 11 (18) ◽  
pp. 8667
Author(s):  
Alexandra Soares ◽  
Luciana C. Gomes ◽  
Gabriel A. Monteiro ◽  
Filipe J. Mergulhão

In the present study, the effects of different nutrient media on the development of Escherichia coli biofilms and the production of a heterologous protein were examined. E. coli JM109(DE3) cells transformed with pFM23 plasmid carrying the gene for enhanced green fluorescent protein (eGFP) expression were used. Cells were grown in two different culture media, Lysogenic Broth (LB) and M9ZB, in a flow cell system for 10 days. Epifluorescence microscopy, fluorimetry, and a high-performance liquid chromatography (HPLC) method based on hydrophobic interaction chromatography (HIC) were used to assess bacterial growth, plasmid copy number (PCN), and eGFP production in both planktonic and biofilm cells. The results showed that biofilm development was favored in M9ZB medium when compared with LB. However, the number of eGFP-expressing cells was higher in LB for both planktonic and sessile states (two-fold and seven-fold, respectively). In addition, the PCN in biofilm cells was slightly higher when using LB medium (on average, 29 plasmids per cell versus 20 plasmids per cell in M9ZB), and higher plasmid stability was observed in biofilms formed in LB compared to their planktonic counterparts. Hence, E. coli biofilms grown in LB enhanced both plasmid stability and capacity to produce the model heterologous protein when compared to M9ZB.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1005
Author(s):  
Kevin P. Dalton ◽  
Carmen Alvarado ◽  
Edel Reytor ◽  
Maria del Carmen Nuñez ◽  
Ana Podadera ◽  
...  

The VP60 capsid protein from rabbit haemorrhagic disease virus (RHDV), the causative agent of one of the most economically important disease in rabbits worldwide, forms virus-like particles (VLPs) when expressed using heterologous protein expression systems such as recombinant baculovirus, yeasts, plants or mammalian cell cultures. To prevent RHDV dissemination, it would be beneficial to develop a bivalent vaccine including both RHDV GI.1- and RHDV GI.2-derived VLPs to achieve robust immunisation against both serotypes. In the present work, we developed a strategy of production of a dual-serving RHDV vaccine co-expressing the VP60 proteins from the two RHDV predominant serotypes using CrisBio technology, which uses Tricholusia ni insect pupae as natural bioreactors, which are programmed by recombinant baculovirus vectors. Co-infecting the insect pupae with two baculovirus vectors expressing the RHDV GI.1- and RHDV GI.2-derived VP60 proteins, we obtained chimeric VLPs incorporating both proteins as determined by using serotype-specific monoclonal antibodies. The resulting VLPs showed the typical size and shape of this calicivirus as determined by electron microscopy. Rabbits immunised with the chimeric VLPs were fully protected against a lethal challenge infection with the two RHDV serotypes. This study demonstrates that it is possible to generate a dual cost-effective vaccine against this virus using a single production and purification process, greatly simplifying vaccine manufacturing.


Sign in / Sign up

Export Citation Format

Share Document